
STA 5327 Exam 3

April 28, 2015

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the
exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I
have conducted myself within the guidelines of the University Honor Code.

Signature:

INSTRUCTIONS:

• This is an closed-book, closed-notes exam. However, 2 formula pages are provided at the
back.

• Total time is 2 hrs (10:00 A.M to 12:00 P.M.)

• Show all work, clearly and in order, if you want to receive full credit. When you use your
calculator, explain all relevant mathematics. I reserve the right to take o↵ points if I cannot
see how you arrived at your answer (even if your final answer is correct).

• Circle or otherwise indicate your final answers.

• Answer all the questions in the space provided. You may attach additional sheets
if necessary.

• This test has 4 problems and is worth 80 points. It is your responsibility to make sure that
you have all of the problems.

• Good luck!

Prob. No. Max Points Earned Pts.

1 20

2 20

3 15

4 25

TOTAL:



Question 1. (20 pts.) LetX1, X2, . . . , Xn

be independently and identically distributed as Exponential(✓)
where ✓ > 0 is an unknown parameter. We are interested in estimating ✓2.

a) (12 points) Find the Cramer Rao lower bound for the variance of an unbiased estimator of ✓2.

b) (8 points) Find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) for ✓2. (Hint:
Try to find a power of X̄ which is an unbiased statistic).



Question 2. (20 pts.) Let X1, X2, . . . , Xn

be i.i.d Poisson(�).

a) (10 points) Find an unbiased estimator for P (X1 = 0) = e��.

b) (10 points) Find the UMVUE for e��.



Question 3. (15 pts.) Let X1, X2 are independently and identically distributed as f(x | ✓) where

f(x | ✓) =
(

3x2

✓

3 , if 0 < x < ✓

0, otherwise.

Find the UMVUE for ✓. You can assume that max(X1, X2) is a complete su�cient statistic.



Question 4. (25 pts.) Suppose X
i

, i = 1, . . . , n are i.i.d. samples from Unif([0, ✓]), ✓ > 0. Let
T = X(n).

a) (8 points) Show that for testing hypothesis H0 : ✓ = ✓0 vs. H1 : ✓ = ✓1 for ✓1 > ✓0, the likelihood
Ratio for T is a non-decreasing function.

b) (12 points) Find the most powerful level ↵ = 0.05 test for

H0 : ✓  2 versus H1 : ✓ > 2.

You need to explicitly find the cut-o↵ value for the rejection region.

c) (5 points) Compute and graph the power function for the test in b).
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