STA 5327 Exam 3

April 28, 2015

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Honor Code.

Signature:

INSTRUCTIONS:

- This is an closed-book, closed-notes exam. However, 2 formula pages are provided at the back.
- Total time is 2 hrs (10:00 A.M to 12:00 P.M.)
- Show all work, clearly and in order, if you want to receive full credit. When you use your calculator, explain all relevant mathematics. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 4 problems and is worth 80 points. It is your responsibility to make sure that you have all of the problems.
- Good luck!

Prob. No.	Max Points	Earned Pts.
1	20	
2	20	
3	15	
4	25	

TOTAL: \qquad

Question 1. (20 pts.) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independently and identically distributed as Exponential (θ) where $\theta>0$ is an unknown parameter. We are interested in estimating θ^{2}.
a) (12 points) Find the Cramer Rao lower bound for the variance of an unbiased estimator of θ^{2}.
b) (8 points) Find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) for θ^{2}. (Hint: Try to find a power of \bar{X} which is an unbiased statistic).

Question 2. (20 pts.) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d $\operatorname{Poisson}(\lambda)$.
a) (10 points) Find an unbiased estimator for $P\left(X_{1}=0\right)=e^{-\lambda}$.
b) (10 points) Find the UMVUE for $e^{-\lambda}$.

Question 3. (15 pts.) Let X_{1}, X_{2} are independently and identically distributed as $f(x \mid \theta)$ where

$$
f(x \mid \theta)=\left\{\begin{array}{l}
\frac{3 x^{2}}{\theta^{3}}, \quad \text { if } \quad 0<x<\theta \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Find the UMVUE for θ. You can assume that $\max \left(X_{1}, X_{2}\right)$ is a complete sufficient statistic.

Question 4. (25 pts.) Suppose $X_{i}, i=1, \ldots, n$ are i.i.d. samples from $\operatorname{Unif}([0, \theta]), \theta>0$. Let $T=X_{(n)}$ 。
a) (8 points) Show that for testing hypothesis $H_{0}: \theta=\theta_{0}$ vs. $H_{1}: \theta=\theta_{1}$ for $\theta_{1}>\theta_{0}$, the likelihood Ratio for T is a non-decreasing function.
b) (12 points) Find the most powerful level $\alpha=0.05$ test for

$$
H_{0}: \theta \leq 2 \quad \text { versus } \quad H_{1}: \theta>2
$$

You need to explicitly find the cut-off value for the rejection region.
c) (5 points) Compute and graph the power function for the test in b).

1 Distribution Overview

1.1 Discrete Distributions

	Notation ${ }^{1}$	$F_{X}(x)$	$f_{X}(x)$	$\mathbb{E}[X]$	$\mathbb{V}[X]$	$M_{X}(s)$
Uniform	Unif $\{a, \ldots, b\}$	$\begin{cases}0 & x<a \\ \frac{\lfloor x\rfloor-a+1}{b-a} & a \leq x \leq b \\ 1 & x>b\end{cases}$	$\frac{I(a<x<b)}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^{2}-1}{12}$	$\frac{e^{a s}-e^{-(b+1) s}}{s(b-a)}$
Bernoulli	Bern (p)	$(1-p)^{1-x}$	$p^{x}(1-p)^{1-x}$	p	$p(1-p)$	$1-p+p e^{s}$
Binomial	$\operatorname{Bin}(n, p)$	$I_{1-p}(n-x, x+1)$	$\binom{n}{x} p^{x}(1-p)^{n-x}$	$n p$	$n p(1-p)$	$\left(1-p+p e^{s}\right)^{n}$
Multinomial	Mult (n, p)		$\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} \quad \sum_{i=1}^{k} x_{i}=n$	$n p_{i}$	$n p_{i}\left(1-p_{i}\right)$	$\left(\sum_{i=0}^{k} p_{i} e^{s_{i}}\right)^{n}$
Hypergeometric	$\operatorname{Hyp}(N, m, n)$	$\approx \Phi\left(\frac{x-n p}{\sqrt{n p(1-p)}}\right)$	$\frac{\binom{m}{x}\binom{m-x}{n-x}}{\binom{N}{x}}$	$\frac{n m}{N}$	$\frac{n m(N-n)(N-m)}{N^{2}(N-1)}$	N / A
Negative Binomial	NBin (n, p)	$I_{p}(r, x+1)$	$\binom{x+r-1}{r-1} p^{r}(1-p)^{x}$	$r \frac{1-p}{p}$	$r \frac{1-p}{p^{2}}$	$\left(\frac{p}{1-(1-p) e^{s}}\right)^{r}$
Geometric	Geo (p)	$1-(1-p)^{x} \quad x \in \mathbb{N}^{+}$	$p(1-p)^{x-1} \quad x \in \mathbb{N}^{+}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$	$\frac{p}{1-(1-p) e^{s}}$
Poisson	Po (λ)	$e^{-\lambda} \sum_{i=0}^{x} \frac{\lambda^{i}}{i!}$	$\frac{\lambda^{x} e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda\left(e^{s}-1\right)}$

[^0]
1.2 Continuous Distributions

	Notation	$F_{X}(x)$	$f_{X}(x)$	$\mathbb{E}[X]$	$\mathbb{V}[X]$	$M_{X}(s)$
Uniform	Unif (a, b)	$\begin{cases}0 & x<a \\ \frac{x-a}{b-a} & a<x<b \\ 1 & x>b\end{cases}$	$\frac{I(a<x<b)}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	$\frac{e^{s b}-e^{s a}}{s(b-a)}$
Normal	$\mathcal{N}\left(\mu, \sigma^{2}\right)$	$\Phi(x)=\int_{-\infty}^{x} \phi(t) d t$	$\phi(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}$	μ	σ^{2}	$\exp \left\{\mu s+\frac{\sigma^{2} s^{2}}{2}\right\}$
Log-Normal	$\ln \mathcal{N}\left(\mu, \sigma^{2}\right)$	$\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left[\frac{\ln x-\mu}{\sqrt{2 \sigma^{2}}}\right]$	$\frac{1}{x \sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}\right\}$	$e^{\mu+\sigma^{2} / 2}$	$\left(e^{\sigma^{2}}-1\right) e^{2 \mu+\sigma^{2}}$	
Multivariate Normal	$\operatorname{MVN}(\mu, \Sigma)$		$(2 \pi)^{-k / 2}\|\Sigma\|^{-1 / 2} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}$	μ	Σ	$\exp \left\{\mu^{T} s+\frac{1}{2} s^{T} \Sigma s\right\}$
Student's t	Student (ν)	$I_{x}\left(\frac{\nu}{2}, \frac{\nu}{2}\right)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2}$	0	0	
Chi-square	χ_{k}^{2}	$\frac{1}{\Gamma(k / 2)} \gamma\left(\frac{k}{2}, \frac{x}{2}\right)$	$\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{k / 2} e^{-x / 2}$	k	$2 k$	$(1-2 s)^{-k / 2} s<1 / 2$
F	$\mathrm{F}\left(d_{1}, d_{2}\right)$	$I_{\frac{d_{1} x}{d_{1} x+d_{2}}}\left(\frac{d_{1}}{2}, \frac{d_{1}}{2}\right)$	$\frac{\sqrt{\frac{\left(d_{1} x\right)^{d_{1}} d_{2}^{d_{2}}}{\left(d_{1} x+d_{2}\right)^{d_{1}+d_{2}}}}}{x \mathrm{~B}\left(\frac{d_{1}}{2}, \frac{d_{1}}{2}\right)}$	$\frac{d_{2}}{d_{2}-2}$	$\frac{2 d_{2}^{2}\left(d_{1}+d_{2}-2\right)}{d_{1}\left(d_{2}-2\right)^{2}\left(d_{2}-4\right)}$	
Exponential	$\operatorname{Exp}(\beta)$	$1-e^{-x / \beta}$	$\frac{1}{\beta} e^{-x / \beta}$	β	β^{2}	$\frac{1}{1-\beta s}(s<1 / \beta)$
Gamma	$\operatorname{Gamma}(\alpha, \beta)$	$\frac{\gamma(\alpha, x / \beta)}{\Gamma(\alpha)}$	$\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}$	$\alpha \beta$	$\alpha \beta^{2}$	$\left(\frac{1}{1-\beta s}\right)^{\alpha}(s<1 / \beta)$
Inverse Gamma	InvGamma (α, β)	$\frac{\Gamma\left(\alpha, \frac{\beta}{x}\right)}{\Gamma(\alpha)}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} e^{-\beta / x}$	$\frac{\beta}{\alpha-1} \alpha>1$	$\frac{\beta^{2}}{(\alpha-1)^{2}(\alpha-2)^{2}} \alpha>2$	$\frac{2(-\beta s)^{\alpha / 2}}{\Gamma(\alpha)} K_{\alpha}(\sqrt{-4 \beta s})$
Dirichlet	Dir (α)		$\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}$	$\frac{\alpha_{i}}{\sum_{i=1}^{k} \alpha_{i}}$	$\frac{\mathbb{E}\left[X_{i}\right]\left(1-\mathbb{E}\left[X_{i}\right]\right)}{\sum_{i=1}^{k} \alpha_{i}+1}$	
Beta	$\operatorname{Beta}(\alpha, \beta)$	$I_{x}(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	$1+\sum_{k=1}^{\infty}\left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r}\right) \frac{s^{k}}{k!}$
Weibull	Weibull (λ, k)	$1-e^{-(x / \lambda)^{k}}$	$\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}$	$\lambda \Gamma\left(1+\frac{1}{k}\right)$	$\lambda^{2} \Gamma\left(1+\frac{2}{k}\right)-\mu^{2}$	$\sum_{n=0}^{\infty} \frac{s^{n} \lambda^{n}}{n!} \Gamma\left(1+\frac{n}{k}\right)$
Pareto	$\operatorname{Pareto}\left(x_{m}, \alpha\right)$	$1-\left(\frac{x_{m}}{x}\right)^{\alpha} \quad x \geq x_{m}$	$\alpha \frac{x_{m}^{\alpha}}{x^{\alpha+1}} \quad x \geq x_{m}$	$\frac{\alpha x_{m}}{\alpha-1} \alpha>1$	$\frac{x_{m}^{\alpha}}{(\alpha-1)^{2}(\alpha-2)} \alpha>2$	$\alpha\left(-x_{m} s\right)^{\alpha} \Gamma\left(-\alpha,-x_{m} s\right) s<0$

[^0]: ${ }^{1}$ We use the notation $\gamma(s, x)$ and $\Gamma(x)$ to refer to the Gamma functions and use $\mathrm{B}(x, y)$ and I_{x} to refer to the Beta functions

