STA 5327 Exam 3 April 28, 2015

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Honor Code.

Signature: _____

INSTRUCTIONS:

- This is an closed-book, closed-notes exam. However, 2 formula pages are provided at the back.
- Total time is 2 hrs (10:00 A.M to 12:00 P.M.)
- Show all work, clearly and in order, if you want to receive full credit. When you use your calculator, explain all relevant mathematics. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 4 problems and is worth 80 points. It is your responsibility to make sure that you have all of the problems.
- Good luck!

Prob. No.	Max Points	Earned Pts.
1	20	
2	20	
3	15	
4	25	

TOTAL: _____

Question 1. (20 pts.) Let X_1, X_2, \ldots, X_n be independently and identically distributed as Exponential(θ) where $\theta > 0$ is an unknown parameter. We are interested in estimating θ^2 .

a) (12 points) Find the Cramer Rao lower bound for the variance of an unbiased estimator of θ^2 .

b) (8 points) Find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) for θ^2 . (Hint: Try to find a power of \bar{X} which is an unbiased statistic).

Question 2. (20 pts.) Let X_1, X_2, \ldots, X_n be i.i.d Poisson (λ) .

- a) (10 points) Find an unbiased estimator for $P(X_1 = 0) = e^{-\lambda}$.
- b) (10 points) Find the UMVUE for $e^{-\lambda}$.

Question 3. (15 pts.) Let X_1, X_2 are independently and identically distributed as $f(x \mid \theta)$ where

$$f(x \mid \theta) = \begin{cases} \frac{3x^2}{\theta^3}, & \text{if } 0 < x < \theta \\ 0, & \text{otherwise.} \end{cases}$$

Find the UMVUE for θ . You can assume that $\max(X_1, X_2)$ is a complete sufficient statistic.

Question 4. (25 pts.) Suppose $X_i, i = 1, ..., n$ are i.i.d. samples from $\text{Unif}([0, \theta]), \theta > 0$. Let $T = X_{(n)}$.

a) (8 points) Show that for testing hypothesis $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ for $\theta_1 > \theta_0$, the likelihood Ratio for T is a non-decreasing function.

b) (12 points) Find the most powerful level $\alpha = 0.05$ test for

 $H_0: \theta \le 2$ versus $H_1: \theta > 2$.

You need to explicitly find the cut-off value for the rejection region.

c) (5 points) Compute and graph the power function for the test in b).

1 Distribution Overview

1.1 Discrete Distributions

1 I c

	Notation ¹	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X ight]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform	$\mathrm{Unif}\left\{a,\ldots,b ight\}$	$\begin{cases} 0 & x < a \\ \frac{\lfloor x \rfloor - a + 1}{b - a} & a \leq x \leq b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a + 1}$	$rac{a+b}{2}$	$\frac{(b-a+1)^2 - 1}{12}$	$\frac{e^{as}-e^{-(b+1)s}}{s(b-a)}$
Bernoulli	$\mathrm{Bern}(p)$	$(1 x > b \\ (1-p)^{1-x}$	$p^{x}\left(1-p\right)^{1-x}$	p	p(1-p)	$1-p+pe^s$
Binomial	$\operatorname{Bin}\left(n,p ight)$	$I_{1-p}(n-x,x+1)$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(1-p+pe^s)^n$
Multinomial	$\operatorname{Mult}\left(n,p\right)$		$rac{n!}{x_1!\ldots x_k!}p_1^{x_1}\cdots p_k^{x_k} \sum_{i=1}^k x_i=n$	np_i	$np_i(1-p_i)$	$\left(\sum_{i=0}^k p_i e^{s_i}\right)^n$
Hypergeometric	$\mathrm{Hyp}\left(N,m,n\right)$	$pprox \Phi\left(rac{x-np}{\sqrt{np(1-p)}} ight)$	$\frac{\binom{m}{x}\binom{m-x}{n-x}}{\binom{N}{x}}$	$rac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	N/A
Negative Binomial	$\operatorname{NBin}\left(n,p ight)$	$I_p(r,x+1)$	$egin{pmatrix} x+r-1\ r-1 \end{pmatrix} p^r (1-p)^x \ p(1-p)^{x-1} x\in \mathbb{N}^+ \end{cases}$	$rrac{1-p}{p}$	$rrac{1-p}{p^2}$	$\left(\frac{p}{1-(1-p)e^s}\right)^r$
Geometric	$\operatorname{Geo}\left(p ight)$	$1-(1-p)^x$ $x\in\mathbb{N}^+$	$p(1-p)^{x-1}$ $x\in \mathbb{N}^+$	$\frac{1}{p}$	$rac{1-p}{p^2}$	$\frac{p}{1-(1-p)e^s}$
Poisson	$Po(\lambda)$	$e^{-\lambda}\sum_{i=0}^xrac{\lambda^i}{i!}$	$rac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^s-1)}$
Uniform (discrete)		Binomial		ometric		Poisson
	8 - 8	Ţ			→ p=0.2 → p=0.5 + p=0.8	
	- 50	Ĩ	9 - 9			
		A.	A			
	PMF		AMF 4.		PMF 02	À
			0.5		5-	A + + + + + +
	50°0 00°1 4 1			····· • ··· • ···		0-0-0-0-0-8-0-0-0-0-0-0-0
a b	, o (10 20	30 40 0 2 4	6	8 10 0	5 10 15 x

¹We use the notation $\gamma(s, x)$ and $\Gamma(x)$ to refer to the Gamma functions and use B(x, y) and I_x to refer to the Beta functions

	Notation	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X\right]$	$M_X(s)$
Uniform	$\operatorname{Unif}\left(a,b ight)$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{sb} - e^{sa}}{s(b-a)}$
Normal	$\mathcal{N}\left(\mu,\sigma^{2} ight)$	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$\exp\left\{\mu s + \frac{\sigma^2 s^2}{2}\right\}$
Log-Normal	$\ln \mathcal{N}\left(\mu,\sigma^2\right)$	$\frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2\sigma^2}}\right]$	$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(\ln x-\mu)^2}{2\sigma^2}\right\}$	$e^{\mu+\sigma^2/2}$	$(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$	
Multivariate Normal	$\mathrm{MVN}\left(\mu,\Sigma\right)$		$(2\pi)^{-k/2} \Sigma ^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	μ	Σ	$\exp\left\{\boldsymbol{\mu}^{T}\boldsymbol{s} + \frac{1}{2}\boldsymbol{s}^{T}\boldsymbol{\Sigma}\boldsymbol{s}\right\}$
Student's t	$\operatorname{Student}(\nu)$	$I_x\left(rac{ u}{2},rac{ u}{2} ight)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	0	0	
Chi-square	χ^2_k	$\frac{1}{\Gamma(k/2)}\gamma\left(\frac{k}{2},\frac{x}{2}\right)$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2}e^{-x/2}$	k	2k	$(1-2s)^{-k/2} \ s < 1/2$
F	$\mathrm{F}(d_1,d_2)$	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_1}{2}\right)$	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{x\mathrm{B}\left(\frac{d_1}{2},\frac{d_1}{2}\right)}$	$\frac{d_2}{d_2-2}$	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$	
Exponential	$\operatorname{Exp}\left(eta ight)$	$1 - e^{-x/\beta}$	$rac{1}{eta}e^{-x/eta}$	β	eta^2	$\frac{1}{1-\beta s}\left(s<1/\beta\right)$
Gamma	$\operatorname{Gamma}\left(\alpha,\beta\right)$	$\frac{\gamma(\alpha,x/\beta)}{\Gamma(\alpha)}$	$\frac{1}{\Gamma\left(\alpha\right)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}$	lphaeta	$lphaeta^2$	$\left(\frac{1}{1-\beta s}\right)^{\alpha}(s<1/\beta)$
Inverse Gamma	$\operatorname{InvGamma}\left(\alpha,\beta\right)$	$\frac{\Gamma\left(\alpha,\frac{\beta}{x}\right)}{\Gamma\left(\alpha\right)}$	$rac{eta^{lpha}}{\Gamma\left(lpha ight)}x^{-lpha-1}e^{-eta/x}$	$\frac{\beta}{\alpha-1} \; \alpha > 1$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)^2} \ \alpha > 2$	$\frac{2(-\beta s)^{\alpha/2}}{\Gamma(\alpha)}K_{\alpha}\left(\sqrt{-4\beta s}\right)$
Dirichlet	$\operatorname{Dir}\left(lpha ight)$		$\frac{\Gamma\left(\sum_{i=1}^{k}\alpha_{i}\right)}{\prod_{i=1}^{k}\Gamma\left(\alpha_{i}\right)}\prod_{i=1}^{k}x_{i}^{\alpha_{i}-1}$	$\frac{\alpha_i}{\sum_{i=1}^k \alpha_i}$	$\frac{\mathbb{E}\left[X_{i}\right]\left(1-\mathbb{E}\left[X_{i}\right]\right)}{\sum_{i=1}^{k}\alpha_{i}+1}$	
Beta	$\operatorname{Beta}\left(\alpha,\beta\right)$	$I_x(lpha,eta)$	$\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}x^{\alpha-1}\left(1-x\right)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{s^k}{k!}$
Weibull	$\mathrm{Weibull}(\lambda,k)$	$1 - e^{-(x/\lambda)^k}$	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$	$\lambda\Gamma\left(1+\frac{1}{k}\right)$	$\lambda^2 \Gamma\left(1+\frac{2}{k}\right) - \mu^2$	$\sum_{n=0}^{\infty} \frac{s^n \lambda^n}{n!} \Gamma\left(1 + \frac{n}{k}\right)$
Pareto	$\operatorname{Pareto}(x_m, \alpha)$	$1 - \left(\frac{x_m}{x}\right)^{\alpha} \ x \ge x_m$	$\alpha \frac{x_m^{\alpha}}{x^{\alpha+1}} x \ge x_m$	$\frac{\alpha x_m}{\alpha - 1} \; \alpha > 1$	$\frac{x_m^{\alpha}}{(\alpha-1)^2(\alpha-2)} \ \alpha > 2$	$\alpha(-x_m s)^{\alpha} \Gamma(-\alpha, -x_m s) \ s < 0$

1.2 Continuous Distributions