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Overview

High-dimensional data ubiuitous in modern applications

Sample size n smaller than the number of variables p - ‘small
n large p problem

Classical statistical methods break down in such settings

Exploiting structure is crucial

Low rank matrix/tensor factorizations for estimating joint
dependence among high dimensional continuous/categorical
variables
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Motivating application - high-dim regression

yi ∈ R & xi = (xi1, . . . , xip)′ ∈ X ⊂ Rp, i = 1, . . . , n
n = sample size, p=number of predictors & p � n
yi = xT

i β + εi , εi ∼ N(0, σ2)
In big data problems, dimensionality reduction is crucial
sparsity in β: L1 & other regularization methods

Figure: millions of genes potentially affecting a biomarker
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Motivating application - large covariance estimation

Inference on dependence in yi = (yi1, . . . , yip)′ ∈ Rp,
i = 1, . . . , n: estimate Ω = cov(yi )
Regularization approaches for large covariance estimation
banding/tapering (BL 08, WP 10), thresholding (BL 08, RLZ
09, CL 11), banding/penalizing Cholesky factor (WP 03, RLZ
10), regularized PCA (JL 09, HT 06) and many others
Many regularization approaches but what about uncertainty?
Bayesian methods enter naturally

Figure: exploiting structure in estimating covariance
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Background on factor models

Massive dimensional vector of candidate predictors
encountered in many application areas.

Factor models provide a convenient framework for dimension
reduction in large p, small n applications (West, 2003; Lucas
et al., 2006; Carvalho et al., 2008).

Explain dependence among high dimensional observations
through fewer number of underlying factors.
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Factor modeling

Highly successful approach for dimensionality reduction

Relate high-dimensional yi to low-dimensional ηi through

yi = Ληi + εi , εi ∼ Np(0,Ω)

Λ = p × k tall skinny factor loadings matrix

ηi ∼ Nk(0, Ik) are latent factors

Marginalizing out ηi ,

yi ∼ Np(0,Σ), Σ = ΛΛT + Ω
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Sparse factor modeling

West, 2003 & many others

Reduce dimensionality in two ways

The number of latent factors k � p

In addition, the loadings matrix Λ relating ηi to yi has lots of
zeros

This structure is well motivated in many biomedical
applications

For example, yi = gene expression, ηi = pathway expression,
& small proportion of genes are in any given pathway

Connection to sparse PCA (Zou, Hastie & Tibshirani, 2006)
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Bayesian factor models - recent developments

Variable selection-type mixture prior on loadings (Lucas et al.,
2006; Carvalho et al., 2008).

Recent work on latent feature models using the Indian buffet
process (Griffiths & Ghahramani, 2006; Thibaux & Jordan,
2007).

Weighted versions have found applications in factor analysis
(Knowles & Ghahramani, 2007; Meeds et al., 2007; Rai &
Daumé, 2009).

Parameter expansion to induce heavy-tailed default prior on
the loadings (Ghosh & Dunson, 2009).
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Some notations

ΘΛ to denote the collection of matrices Λ with p rows and
infinitely many columns such that ΛΛT is a p × p matrix with
all entries finite.

ΘΛ =

{
Λ = (λjh), j = 1, . . . , p, h = 1 . . . ,∞, max

1≤j≤p

∞∑
h=1

λ2
jh <∞

}
Denote ΘΣ to be the set of p × p diagonal matrices with
non-negative entries and Θ to be all p × p positive
semi-definite matrices.

Define g : ΘΛ ×ΘΣ → Θ where g(Λ,Σ) = ΛΛT + Σ.

Choose independent priors supported on ΘΛ ×ΘΣ, which
induce a prior on Ω ∈ Θ through g .
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The MGPS prior (Bhattacharya & Dunson, 2011
(Biometrika)

Proposed multiplicative gamma process shrinkage (MGPS)
prior on the loadings is given by

λjh | φjh, τh ∼ N(0, φ−1
jh τ

−1
h ), φjh ∼ G(ν/2, ν/2),

τh =
h∏

l=1

δl , δ1 ∼ G(a1, 1), δl ∼ G(a2, 1), l ≥ 2,

τh is a global shrinkage parameter for the hth column,
stochastically increasing under the restriction a2 > 1.

φjh’s are local shrinkage parameters for the elements in the
hth column, avoid over-shrinking the non-zero loadings in
later columns.
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Choice of the truncation level

Truncate the loadings matrix to have k∗ << p columns.
Posterior samples from approximated conditional posterior.

How to chose an appropriate level of truncation?

Redundant factors – correspond to columns of loadings whose
all elements are less than ε in magnitude.

Effective factors – all non-redundant factors.
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A possible approach

Start with a conservative guess k̃ of k∗.

At the tth iteration of the Gibbs sampler, define m(t) to be
the number of redundant columns in Λk̃ , whose all elements
are less than ε in magnitude(ε = 10−4 used as a default)

Usual shrinkage priors on the loadings exhibit the phenomenon
of factor splitting.

Our approach avoids this problem by shrinking increasingly in
later columns.

Define k∗(t) = k̃ −m(t) to be the effective number of factors
at iteration t.
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Adaptive Gibbs sampler

Adapt the number of factors as the sampler progresses –
avoids specifying over-conservative initial guess.

Designed to satisfy the diminishing adaptation condition of
Roberts & Rosenthal (2007). Discard redundant columns if
m(t) > 0, otherwise add a new column with additional
parameters drawn from the prior.

Let k̃(t) be the truncation level at the tth iteration and
k∗(t) = k̃(t) −m(t) the effective number of factors.

Estimate k∗ by the mode or median of the samples
{k∗(t)}Nt=B+1.

Bayesian Factor Models



Covariance matrix estimation

Set Σ(t) = Λ
(t)

k̃(t)
Λ

(t)′

k̃(t)
+ Ω(t).

{Σ(t)}Nt=B+1 represent draws from the approximated marginal
posterior distribution of Σ given yi , i = 1, . . . , n.
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Regression Coefficient Estimation

Recall, after marginalizing out latent factors, yi ∼ Np(0,Ω)
with Σ = ΛΛT + Ω.

E (zi | xi ) = xT
i β, with β = Σ−1

xx Σzx , true regression
coefficients of z on x .

Set β(t) = {Σ(t)
xx }−1 Σ

(t)
zx , where Σ

(t)
xx = Λ

(t)
x Λ

(t) T
x + Ω

(t)
xx

denote posterior samples at the tth iteration.

Computation involves inverting k̃(t) × k̃(t) matrices at tth
iteration.

Let β̂ denote the posterior mean of β. The proposed
formulation retains the non-zero elements of β while heavily
shrinks the rest toward zero.
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Covariance matrix estimation

true (p, k) (100, 5) (500, 10) (1000, 15)

method MGPS Band MAP MGPS Band MAP MGPS Band MAP

mse

mean 0·2 1·3 0·2 0·1 0·4 0·1 0·1 0·3 0·1
min 0·1 0·9 0·1 0·02 0·4 0·05 0·02 0·2 0·05
max 0·3 1·6 0·3 0·2 0·5 0·3 0·4 0·5 0·3
aab

mean 1·9 3·1 1·0 0·6 0·6 0·3 0·4 0·5 0·3
min 1·3 2·5 0·6 0·4 0·6 0·2 0·2 0·4 0·2
max 2·5 4·9 1·5 0·9 0·9 0·5 0·6 0·5 0·5
mab

mean 50·9 111 44·8 95·4 117·8 97·7 115 115 108
min 38·8 99·8 24·7 50·2 105 64·4 52·6 111 74·7
max 74·1 131 105 152 131 162 242 240 221

Simulation study performance in covariance matrix estimation. The average, best and worst case performance across
50 simulation replicates in terms of mean square error (×102), average absolute bias (×102) and maximum absolute

bias (×102) are tabulated for the different methods. MGPS: posterior mean under proposed prior; Band: Banding
algorithm of Bickel and Levina, 2008; MAP: approximate MAP estimate of covariance matrix
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Time & Memory Constraints

Theoretical aspects such as convergence rates of the
estimators well studied in Bayesian factor models. (PBPD 14)

Computation of the covariance estimate Σ̂ = Λ̂Λ̂T + Ω̂ can be
challenging for high to ultra-high p

In standard implementations,

the Λp×k needs to be stored
the low-rank matrix must be inverted, which requires costs
O(k3) and O(k2) in time and memory respectively per MCMC
iteration
posterior mean and variance involve matrix multiplications that
involve more than O(p) computations
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A Divide-and-Conquer Approach To Covariance Matrix
Estimation In The Bayesian Framework
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Existing Literature

Computer Science

Distributed Training Strategies for the Structured Perceptron
(MHM 10)
Divide-and-Conquer matrix factorization (MJT 11)
A Divide-and-Conquer procedure for Sparse Inverse Covariance
Matrix Estimation (HDRB 12)

Statistics

Bootstrapping big data (KTSJ 12)
Divide-and-Conquer kernel ridge regression (ZDW 13)
Robust and Scalable Bayes Via A Median of Subset Posterior
Measures (MSLD 14)
Computational limits of Divide-and-Conquer method (SC 15)
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The Divide-and-Conquer Framework

(D step)- Randomly partition y into g pg -dimensional

subvectors, {y (1), . . . , y (g)} where y
(m)
i ∈ Rpg , m = 1, . . . , g

(F step) - Fit a factor model to g parallel subvectors using
MCMC to obtain posterior quantities of interest. All posterior
quantities are retained in factored form.

(C step) - The parallel MCMCs generate a final covariance
matrix estimate Σ̂ by combining [Λ(1), . . . ,Λ(g)] using the
correlation structure induced through the latent factors.
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C step: Combine estimates from subgroups

Parallel MCMCs generate g estimates of the low rank matrix
[Λ(1), . . . ,Λ(m), . . . ,Λ(g)] and the sparse matrix
[Ω(1), . . . ,Ω(m), . . . ,Ω(g)]

From (??), an estimate of the covariance matrix for the Σ(m)

is given by

Σ̂(m) = Λ̂(m)TΛ̂(m) + Ω̂(m), m = 1, . . . g

An estimate of the originial covariance matrix Σ̂ is given by

Σ̂ =


Σ̂(1) 0 . . . 0

0 Σ̂(2) . . . 0
...

...
. . .

...

0 0 . . . Σ̂(g)


Independence across sub-estimates ignores the inherent
dependence structure in the observed yi s
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Hierarchical Modeling of the Latent Factor Structure

Conside the hierarchical model on the latent factors
η

(m)
i ∈ Rkg ,

η
(m)
i | Xi ,Z

(m)
i =

√
ρ Xi +

√
1− ρ Z

(m)
i , i = 1, . . . , n, m = 1, . . . , g

(1)
where

Xi ∼ Nkg (0, I) shared across all the latent sub-factors

Z
(m)
i ∼ Nkg (0, I) is idiosyncratic to the sub-factor m
ρ is the correlation that will be induced between the
sub-estimates obtained from the respective sub-groups

η
(m)
i ∼ Nkg (0, I) since

E
(
η

(m)
i | Xi ,Z

(m)
i

)
= 0, V

(
η

(m)
i | Xi ,Z

(m)
i

)
= I

Cov(η
(m)
i , η

(m′)
i ) = ρI
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Posterior Computations: Parallel MCMCs I

1 Sample Xi , i = 1, . . . , n from conditionally independent
Gaussian posteriors

Xi | rest ∼ Nkg

(
µXi ,ΣXi

)
2 Sample Z

(m)
i | rest, i = 1, . . . , n, m = 1, . . . , g from

conditionally independent Gaussian posteriors

Z
(m)
i | rest ∼ Nkg

(
µ
Z

(m)
i

,Σ
Z

(m)
i

)
3 Update η

(m)
i | rest

η
(m)
i | rest = Xi | rest + Z

(m)
i | rest
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C step

The estimate for the original covariance matrix Σ is given by

Σ̂ = D̂ÊD̂T + Ω̂

where

D̂ = diag

(
Λ̂(1), . . . , Λ̂(m)

)
Ê = Ikg I (i = j) + ρ̂Ikg I (i 6= j) ∈ Rkg×kg consists of k2

g block
matrices

For g = 2 groups, an estimate of the covariance matrix Σ̂ is
given by

[
Λ̂(1)Λ̂(1)T + Ω̂(1) ρΛ̂(1)Λ̂(2)T

ρΛ̂(1)Λ̂(2)T Λ̂(2)Λ̂(2)T + Ω̂(2)

]
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Computational Gains: Running time of DnC

Key facts:

If B1 ∈ Rm1×m2 , B2 ∈ Rm2×m3 then B1B2 requires
O(m1m2m3) floating point operations.

If B ∈ Rm×m, then Bx = y can be solved in O(m3)
operations.

If D is diagonal, then u ∼ Np(0,D) can be carried out in
O(p) floating point operations.

Given kg < k and pg � p

O(k3 + npk + nk2 + pk2)→ O(k3
g + npgkg + nk2

g + pgk
2
g )
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Simulation Settings

Explore the decrease in statistical accuracy and speed-up of
DNC in a variety of experimental simulation settings

Comparison with

Full factor model (g = 1) using the MGPS prior
Factor model with 3 groups using the MGPS prior
Factor model with 6 groups using the MGPS prior

Sample sizes: n = 100, 200

Size of the dimension: p = 252, 504, 1008, 2016

True number of factors: k = 6, 12, 24, 36

The true covariance is generated from a factor model with
idiosyncratic error σ2Ip where

1 σ2 = 0.5
2 σ2 ∼ U(1, 5)
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Simulation Results I
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Figure : Simulation Model 1: Operator norm and parallel running time
per replicate (in minutes) comparisons over 20 replicates for n = 100.
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Simulation Results II
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Figure : Simulation Model 2: Operator norm and parallel running time
per replicate (in minutes) comparisons over 20 replicates for n = 200.
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Simulation Results III

Table : Comparative performance in covariance matrix estimation in a
simulation study where p � 104. Average, best and worst performance
reported in terms of operator norm errors with standard errors in
parantheses.

p 10000 20000
k 100 200

g 1 10 20 1 10 20
Error Fail 46.81 (0.11) 47.28 (0.09) Fail 49.35 (0.16) 51.39 (0.11)

maxError Fail 47.30 47.37 Fail 49.31 50.11
minError Fail 46.62 47.06 Fail 49.65 52.39

Time Fail 1626 998 Fail 2234 1276
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Theoretical properties

Lemma

Suppose rank(Λ(m)) = kg ,m = 1, . . . , g and rank(Λ) = k, then
A = ΛΛT and A∗ = DEDT have the same rank.

Remark. The approximation DEDT preserves the rank aposteriori.
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