STA 4442/5440 Final Exam Review Sheet

This guide contains a list of important concepts/formulas and links to material to be studied for the exam. This guide is **NOT** intended to be used as your only study resource; rather, it should help you navigate your notes, textbook, exams, and homework assignments as you study for your final.

Chapter 1: Review of combinatorics

Chapter 2 & 3: Axioms of Probability, Conditional probability, Independence

- Terminology: experiment, sample space S, elementary outcome e, event,
- P(A): probability of an event A

1.
$$0 \le P(A) \le 1$$

2. $P(A) = \sum_{all \ e \ in \ A} P(e)$
3. $P(S) = \sum_{all \ e \ in \ S} P(e) = 1$

- Methods of assigning probability
 - 1. equally likely,

$$P(A) = \frac{\text{number of outcomes in } A}{\text{number of outcomes in } S}$$

2. Alternative (long-run relative frequency) model: perform experiment many times, set

 $P(A) = \text{rel. freq. of } A \text{ in } N \text{ trials} = \frac{\text{number of times } A \text{ occurs in } N \text{ trials}}{N}$

- Event relations: complement (A^c) , union $(A \cup B)$, intersection $(A \cap B \text{ or } A \cap B)$; Venn diagram
- Law of complement: $P(A) = 1 P(A^c)$
- Addition law: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Incompatible/mutually exclusive events: $P(A \cap B) = 0$
- Conditional probability of A given B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Equivalent form: multiplication law $P(A \cap B) = P(B)P(A|B)$

• The Bayes' Theorem

$$P(A|B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- Independence 3 ways to check:
 - 1. P(AB) = P(A)P(B)2. P(A|B) = P(A)
 - 3. P(B|A) = P(B)
- Law of total probability $P(A) = P(A \mid B)P(B) + P(A \mid B^c)P(B^c)$

Chapter 4: Discrete Random Variables

- Terminology: random variable, probability distribution
- Discrete vs. continuous random variables
- Listing distinct values of a discrete random variable X
- Discrete probability distribution $p(x_i) = P(X = x_i)$
 - 1. $p(x_i) \ge 0$ for each value x_i of X

$$2. \sum_{i=1}^{\kappa} p(x_i) = 1$$

- Expectation, variance, and standard deviation σ of a discrete probability distribution
- Bernoulli trials
- Binomial
- Poisson
- Geometric
- Binomial distribution for large n and very small p can be approximated by a Poisson distribution with parameter $\lambda = np$.

Chapter 5: Continuous distributions

- Terminology: continuous random variable X, probability density curve, probability density function (pdf)
- Properties of a pdf:
 - 1. Total area under probability density curve is 1
 - 2. $P(a \le X \le b) =$ area under probability density curve between a and b
 - 3. $f(x) \ge 0$ for all x
- Meaning of a pdf:
 - 1. $f(x) \neq P(X = x)$
 - 2. P(X = x) = 0
 - 3. Only meaningful to talk about probability that a continuous r. v. X lies in an interval
 - 4. $P(a \le X \le b) = (\text{area to the left of } b) (\text{area to the left of } a)$
 - 5. Expectation, variance and standard deviation of a continuous random variable
- Population 100*p*-th percentile: area of p to the left, 1 p to the right
 - \circ Lower (first) quartile = 25th percentile
 - \circ Second quartile (median) = 50th percentile
 - \circ Upper (third) quartile = 75th percentile
- Standardized variable $Z = \frac{X \mu}{\sigma}$ has mean 0, standard deviation 1

- Normal distribution $N(\mu, \sigma)$
 - Symmetric, bell-shaped curve
 - μ locates the center; for this distribution, μ is also the median
 - $\circ~\sigma$ describes the spread: lower values \rightarrow less spread (more concentration about the mean)
- Standard normal distribution N(0,1)
 - $\circ~{\rm Mean}~\mu=0$
 - $\circ~$ Standard deviation $\sigma=1$
 - Table gives $P(Z \leq z)$ = area under curve to the left of z
- Properties of the standard normal distribution
 - 1. $P(Z \le 0) = .5$
 - 2. $P(Z \le -z) = 1 P(Z \le z) = P(Z \ge z)$
- Find an area given an interval of z values
- Find a z value given an area under the curve
- Probability calculations with normal distributions: standardize, then use standard normal table
- Normal approximation to the binomial, using continuity correction
- Uniform distribution, Exponential distribution

Chapter 6: Jointly distributed random variables

- Joint pmf p(x, y), $\sum_{\text{all x,all y}} p(x, y) = 1$
- $X \sim Bin(n,p), Y \sim Bin(m,p)$, then $X + Y \sim Bin(m+n,p)$ if (X,Y) are independent
- $X \sim Pois(\lambda), Y \sim Pois(\mu)$, then $X + Y \sim Poisson(\lambda + \mu)$ if (X, Y) are independent
- $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ if (X, Y) are independent
- $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, then $X Y \sim N(\mu_1 \mu_2, \sigma_1^2 + \sigma_2^2)$ if (X, Y) are independent
- Conditional probability of a discrete random variable X given another discrete random variable Y = y is $p(x, y)/p_Y(y)$.
- $X \sim Poiss(\lambda), Y \sim Poiss(\mu), (X, Y)$ are independent, $X \mid (X + Y) = k \sim Bin(k, \frac{\lambda}{\lambda + \mu}).$
- •
- $X \sim Geom(p), Y \sim Geom(p), (X, Y)$ are independent, $P(X = i \mid (X + Y) = k) = 1/(k-1)$.

Chapter 7: Properties of Expectation

- E(X + Y) = E(X) + E(Y)
- Cov(X,Y) = E(XY) E(X)E(Y)
- Var(X + Y) = Var(X) + Var(Y) if X, Y are independent
- $Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}, -1 \le Corr(X,Y) \le 1$
- $E(X \mid Y) = \sum_{allx} xp(x \mid y)$
- $E(E(X \mid Y)) = E(X)$