## STA 4442/5440 Final Exam Review Sheet

This guide contains a list of important concepts/formulas and links to material to be studied for the exam. This guide is NOT intended to be used as your only study resource; rather, it should help you navigate your notes, textbook, exams, and homework assignments as you study for your final.

## Chapter 1: Review of combinatorics

## Chapter 2 \& 3: Axioms of Probability, Conditional probability, Independence

- Terminology: experiment, sample space $S$, elementary outcome e, event,
- $P(A)$ : probability of an event $A$

1. $0 \leq P(A) \leq 1$
2. $P(A)=\sum_{\text {alle in } A} P(e)$
3. $P(S)=\sum_{\text {all e in } S} P(e)=1$

- Methods of assigning probability

1. equally likely,

$$
P(A)=\frac{\text { number of outcomes in } A}{\text { number of outcomes in } S}
$$

2. Alternative (long-run relative frequency) model: perform experiment many times, set

$$
P(A)=\text { rel. freq. of } A \text { in } N \text { trials }=\frac{\text { number of times } A \text { occurs in } N \text { trials }}{N}
$$

- Event relations: complement $\left(A^{c}\right)$, union $(A \cup B)$, intersection $(A \cap B$ or $A \cap B)$; Venn diagram
- Law of complement: $P(A)=1-P\left(A^{c}\right)$
- Addition law: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Incompatible/mutually exclusive events: $P(A \cap B)=0$
- Conditional probability of A given B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Equivalent form: multiplication law $P(A \cap B)=P(B) P(A \mid B)$

- The Bayes' Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Independence - 3 ways to check:

1. $P(A B)=P(A) P(B)$
2. $P(A \mid B)=P(A)$
3. $P(B \mid A)=P(B)$

- Law of total probability $P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)$


## Chapter 4: Discrete Random Variables

- Terminology: random variable, probability distribution
- Discrete vs. continuous random variables
- Listing distinct values of a discrete random variable $X$
- Discrete probability distribution $p\left(x_{i}\right)=P\left(X=x_{i}\right)$

1. $p\left(x_{i}\right) \geq 0$ for each value $x_{i}$ of $X$
2. $\sum_{i=1}^{k} p\left(x_{i}\right)=1$

- Expectation, variance, and standard deviation $\sigma$ of a discrete probability distribution
- Bernoulli trials
- Binomial
- Poisson
- Geometric
- Binomial distribution for large $n$ and very small $p$ can be approximated by a Poisson distribution with parameter $\lambda=n p$.


## Chapter 5: Continuous distributions

- Terminology: continuous random variable $X$, probability density curve, probability density function (pdf)
- Properties of a pdf:

1. Total area under probability density curve is 1
2. $P(a \leq X \leq b)=$ area under probability density curve between $a$ and $b$
3. $f(x) \geq 0$ for all $x$

- Meaning of a pdf:

1. $f(x) \neq P(X=x)$
2. $P(X=x)=0$
3. Only meaningful to talk about probability that a continuous r. v. $X$ lies in an interval
4. $P(a \leq X \leq b)=($ area to the left of $b)$ - (area to the left of $a)$
5. Expectation, variance and standard deviation of a continuous random variable

- Population $100 p$-th percentile: area of $p$ to the left, $1-p$ to the right
- Lower (first) quartile $=25$ th percentile
- Second quartile (median) $=50$ th percentile
- Upper (third) quartile $=75$ th percentile
- Standardized variable $Z=\frac{X-\mu}{\sigma}$ has mean 0 , standard deviation 1
- Normal distribution $N(\mu, \sigma)$
- Symmetric, bell-shaped curve
- $\mu$ locates the center; for this distribution, $\mu$ is also the median
- $\sigma$ describes the spread: lower values $\rightarrow$ less spread (more concentration about the mean)
- Standard normal distribution $N(0,1)$
- Mean $\mu=0$
- Standard deviation $\sigma=1$
- Table gives $P(Z \leq z)=$ area under curve to the left of $z$
- Properties of the standard normal distribution

1. $P(Z \leq 0)=.5$
2. $P(Z \leq-z)=1-P(Z \leq z)=P(Z \geq z)$

- Find an area given an interval of $z$ values
- Find a $z$ value given an area under the curve
- Probability calculations with normal distributions: standardize, then use standard normal table
- Normal approximation to the binomial, using continuity correction
- Uniform distribution, Exponential distribution


## Chapter 6: Jointly distributed random variables

- Joint $\operatorname{pmf} p(x, y), \sum_{\text {all } \mathrm{x}, \text { all } \mathrm{y}} p(x, y)=1$
- $X \sim \operatorname{Bin}(n, p), Y \sim \operatorname{Bin}(m, p)$, then $X+Y \sim \operatorname{Bin}(m+n, p)$ if $(X, Y)$ are independent
- $X \sim \operatorname{Pois}(\lambda), Y \sim \operatorname{Pois}(\mu)$, then $X+Y \sim \operatorname{Poisson}(\lambda+\mu)$ if $(X, Y)$ are independent
- $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, then $X+Y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$ if $(X, Y)$ are independent
- $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, then $X-Y \sim N\left(\mu_{1}-\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$ if $(X, Y)$ are independent
- Conditional probability of a discrete random variable $X$ given another discrete random variable $Y=y$ is $p(x, y) / p_{Y}(y)$.
- $X \sim \operatorname{Poiss}(\lambda), Y \sim \operatorname{Poiss}(\mu),(X, Y)$ are independent, $X \left\lvert\,(X+Y)=k \sim \operatorname{Bin}\left(k, \frac{\lambda}{\lambda+\mu}\right)\right.$.
- 
- $X \sim \operatorname{Geom}(p), Y \sim \operatorname{Geom}(p),(X, Y)$ are independent, $P(X=i \mid(X+Y)=k)=1 /(k-1)$.


## Chapter 7: Properties of Expectation

- $E(X+Y)=E(X)+E(Y)$
- $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ if $X, Y$ are independent
- $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}},-1 \leq \operatorname{Corr}(X, Y) \leq 1$
- $E(X \mid Y)=\sum_{\text {allx }} x p(x \mid y)$
- $E(E(X \mid Y))=E(X)$

