Homework 0 (due Sep 20, 2016)

Problem 1: [Outlier problem] Generate 100 observations from the mixture $0.95 N(0,1)+$ $0.025 N(3,1)+0.025 N(-3,1)$. This is to mimic a setting where a small fraction of the data are outliers: 95% of the data have a $N(0,1)$ distribution while the remaining 5% are outliers, which we assume are from a $N(\pm 3,1)$ distribution. Assume a normal $N\left(\mu, \tau^{-1}\right)$ model for the data, with priors $\mu \mid \tau \sim N\left(0, \tau_{0}^{-1} \tau^{-1}\right)$ with $\tau_{0}=0.1$ and $\tau \sim \operatorname{Gamma}(0.5,0.5)$. Report a 95% credible interval for μ. Write down the predictive distribution for a future observation $x \mid x_{1}, \ldots, x_{100}$.

Problem 2: [Polling example] 1447 adults were interviewed prior to the presidential election in 1988, when 727 favored George Bush, 583 favored Michael Dukakis and 137 had no opinion or favored other candidates. Let θ_{1} and θ_{2} denote the population proportions in favor of Bush and Dukakis respectively. With a uniform prior on the simplex for $\left(\theta_{1}, \theta_{2}\right)$, find the posterior probability $P\left(\theta_{1}>\theta_{2} \mid\right.$ data $)$, clearly indicating how you calculate the quantity.

Problem 3: [Psychokinesis example:] Recall $x \sim \operatorname{Binomial}(n, \theta)$ with $n=104,490,000$ and $x=52,263,470$. We want to test the hypothesis $H_{0}: \theta=1 / 2$ versus $H_{1}: \theta \neq 1 / 2$. Assume equal prior probabilities on the two hypothesis and consider $\operatorname{Beta}(\alpha, \alpha)$ prior on θ under H_{1}. Draw a graph plotting the posterior probability $P(\theta=0.5 \mid x)$ versus α. [It should be clear from the graph what values of α lead to $P(\theta=0.5 \mid x)=0.8,0.7,0.6,0.5$ etc] Briefly explain your findings.

Problem 4: Suppose $x \mid \theta \sim \operatorname{Binomial}(n, \theta)$ and we want to test $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$. Consider the following class of priors on $[0,1]$:

$$
\mathcal{G}=\left\{g: \int_{0}^{\theta_{0}} g(\theta) d \theta=1 / 2\right\} .
$$

Clearly, \mathcal{G} consists of all densities g on $[0,1]$ with median θ_{0}. Show that

$$
\sup _{g \in \mathcal{G}} \int_{0}^{1}\binom{n}{x} \theta^{x}(1-\theta)^{n-x} g(\theta) d \theta \leq \frac{1}{2}\left[\binom{n}{x} \theta_{0}^{x}\left(1-\theta_{0}\right)^{n-x}+\binom{n}{x}\left(\frac{x}{n}\right)^{x}\left(1-\frac{x}{n}\right)^{n-x}\right] .
$$

Use this to bound the worst case (over \mathcal{G}) posterior probability of H_{0} in Problem 3 .
Problem 5: [Laplace as variance mixture of normal:] Let $\mathrm{DE}(\tau)$ denote the double exponential (or Laplace) distribution with density $f(x)=(2 \tau)^{-1} e^{-|x| / \tau}, x \in \mathbb{R}$. Let $\operatorname{Exp}(\lambda)$ denote an exponential distribution with density $\lambda e^{-\lambda x}$ for $x \in(0, \infty)$. Show that if $\theta \mid \psi \sim N\left(0, \psi \sigma^{2}\right)$ and $\psi \sim \operatorname{Exp}(1 / 2)$, then $\theta \sim \operatorname{DE}(\sigma)$. [Hint: you may find the following fact useful. For any $a, b, p>0$,

$$
f(x)=\frac{(a / b)^{p / 2}}{2 K_{p}(\sqrt{a b})} x^{(p-1)} e^{-(a x+b / x) / 2}, \quad x \in(0, \infty)
$$

is a probability density, where K_{p} is the modified Bessel function of the second kind. Analytic expressions for K_{p} are available when $p=m / 2$ for an integer m. In particular, $K_{1 / 2}(z)=$ $\sqrt{\pi /(2 z)} e^{-z}$.]

Problem 6: Suppose $\bar{x} \sim N\left(\theta, \sigma^{2} / n\right)$ and we wish to test $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$. Set $\pi(\theta)=0.5 \delta_{\theta_{0}}(\theta)+0.5 \mathrm{~N}\left(\theta_{0}, \sigma^{2}\right)$ where $\delta_{\theta_{0}}(\theta)$ denotes the Dirac delta measure at θ_{0}. Show that the Bayes factor in favor of the alternative, $B_{10}=(1+n)^{-1 / 2} \exp \left[\frac{t^{2}}{2} \frac{n}{n+1}\right]$ where $t=$ $\sqrt{n}\left|\bar{x}-\theta_{0}\right| / \sigma$. Suppose the true $\theta=\theta^{*}$, with $\theta^{*} \neq \theta_{0}$. Show that $B_{10} \xrightarrow{P} \infty$, i.e., for any $M>0$, $P_{\theta^{*}}\left(B_{10}>M\right) \rightarrow 1$ as $n \rightarrow \infty$.

