Hw0 Solutions

January 18, 2016

1(a)

$$
\begin{align*}
E\left((X-Y)^{2} \mid \mathcal{G}\right) & =E\left((X-E(X \mid \mathcal{G})+E(X \mid \mathcal{G})-Y)^{2} \mid \mathcal{G}\right) \\
& =\operatorname{Var}(X \mid \mathcal{G})+E\left((E(X \mid \mathcal{G})-Y)^{2} \mid \mathcal{G}\right)-2 E((X-E(X \mid \mathcal{G}))(E(X \mid \mathcal{G})-Y) \mid \mathcal{G}) \tag{2}\\
& =\operatorname{Var}(X \mid \mathcal{G})+(E(X \mid \mathcal{G})-Y)^{2} \tag{3}\\
& \geq \operatorname{Var}(X \mid \mathcal{G}) \tag{4}
\end{align*}
$$

Justifications:

- All expansions are OK because X and Y are both L^{2}-integrable.
- (1) to (2): Expand the square and use the linearity of conditional expectation.
- (2) to (3): $E\left((E(X \mid \mathcal{G})-Y)^{2} \mid \mathcal{G}\right)=(E(X \mid \mathcal{G})-Y)^{2}$ because both $E(X \mid \mathcal{G})$ and Y are G-easurable. For the same reason, we have

$$
\begin{aligned}
& E((X-E(X \mid \mathcal{G}))(E(X \mid \mathcal{G})-Y) \mid \mathcal{G}) \\
& =(E(X \mid \mathcal{G})-Y) E(X-E(X \mid \mathcal{G}) \mid \mathcal{G}) \\
& =(E(X \mid \mathcal{G})-Y)(E(X \mid \mathcal{G})-E(X \mid \mathcal{G}))=0
\end{aligned}
$$

- (3) to (4): $(E(X \mid \mathcal{G})-Y)^{2}$ is nonnegative almost surely P. Finally, apply the inequality from (a) with $E(X)$ in place of Y.
(b) Define $Z=E(X \mid \mathcal{G})$ (almost surely P). By holding y constant in the definition of the contraction, we see that $f(X)$ is L^{2}-integrable (and analogously for $f(Z)$).Then,

$$
\begin{align*}
\operatorname{Var}(f(X) \mid \mathcal{G}) & \leq E\left((f(X)-f(Z))^{2} \mid \mathcal{G}\right) \tag{5}\\
& \leq E\left((X-Z)^{2} \mid \mathcal{G}\right) \tag{6}\\
& =E\left((X-E(X \mid \mathcal{G}))^{2} \mid \mathcal{G}\right)=\operatorname{Var}(X \mid \mathcal{G}) \tag{7}
\end{align*}
$$

Justifications:

- (5):From (a) with $f(X)$ in place of X and $f(Z)$ in place of Y.
- (5) to (6): Because f is a contraction.
- (6) to (7): Definitions.
(c) First,

$$
\begin{equation*}
0 \leq E\left(\left(Y-Y_{n}\right)^{2}\right)=E\left(Y^{2}\right)-E\left(Y_{n}^{2}\right) \tag{8}
\end{equation*}
$$

since

$$
\begin{equation*}
E\left(Y Y_{n}\right)=E\left(E\left(Y Y_{n}\right) \mid \mathcal{G}_{n}\right)=E\left(Y_{n} E\left(E(X \mid \mathcal{G}) \mid \mathcal{G}_{n}\right)\right)=E\left(Y_{n} E\left(X \mid \mathcal{G}_{n}\right)\right)=E\left(Y_{n}^{2}\right) . \tag{9}
\end{equation*}
$$

Second, by Fatou's lemma,

$$
\begin{equation*}
E\left(Y^{2}\right) \geq \lim _{n \rightarrow \infty} E\left(Y_{n}^{2}\right) \geq E\left(\lim _{n \rightarrow \infty} Y_{n}^{2}\right)=E\left(Y^{2}\right) \tag{10}
\end{equation*}
$$

4(a) i. Yes, since $E\left(e^{t X}\right)=e^{t^{2} / 2}$ for all t.
ii. Yes, since

$$
E\left(e^{t \Theta}\right)=\frac{e^{t}-e^{-t}}{2 t}=1+\frac{t^{2}}{3!}+\frac{t^{4}}{5!}+\cdots \leq 1+t^{2}+\frac{t^{4}}{2!}+\cdots=e^{t^{2}}
$$

iii. No. For example with $t=1$, we find,

$$
\left.E\left(e^{X_{1} X_{2}}\right)=E\left(E e^{X_{1} X_{2}} \mid X_{1}\right)\right)=E\left(e^{X_{1}^{2}} / 2\right)=\infty
$$

(b) Fix $\lambda \geq 0$. For any $t \geq 0$, we have

$$
P(Z \geq t) \leq P\left(e^{\lambda Z} \geq e^{\lambda t}\right) \leq e^{-\lambda t} E\left(e^{\lambda Z}\right)
$$

where the second inequality follows from Markov's inequality. Since the left hand side does not depend on λ, we get

$$
P(Z \geq t) \leq \inf _{\lambda \geq 0}\left(e^{-\lambda t} E\left(e^{\lambda Z}\right)\right)
$$

if X is sub-Gaussian, we then have

$$
P(X \geq t) \leq \inf _{\lambda \geq 0}\left(e^{-\lambda t} e^{C \lambda^{2}} \geq e^{-t^{2} /(4 C)}\right)
$$

since the infimum is attained at $\lambda=t /(2 C)$.
(c) Since X_{1}, \ldots, X_{n} are independent,

$$
E\left(e^{t \sum_{i=1}^{n} X_{i} / n}\right)=\prod_{i=1}^{n} E\left(e^{(t / n) X_{i}}\right) \leq e^{C t^{2} / n}
$$

Applying part (b), but replacing C with C / n, we therefore have,

$$
P(\bar{X} \geq t) \leq e^{-n t^{2} /(4 C)}
$$

