Hw0 for 6448 (due Jan 21) (Debdeep Pati)

- 1. Suppose (Ω, \mathcal{F}, P) is a probability space and \mathcal{G} is a sub- σ -field of \mathcal{F} . Further assume that X and Y are L^2 -integrable random variables on (Ω, \mathcal{F}, P) and that Y is \mathcal{G} -measurable.
 - (a) Prove $\operatorname{Var}(X \mid \mathcal{G}) \leq \operatorname{E}((X Y)^2 \mid \mathcal{G})$ almost surely P, and use this fact to verify $\operatorname{E}(\operatorname{Var}(X \mid \mathcal{G})) \leq \operatorname{Var}(X)$.
 - (b) Assume f is a contraction on \mathbb{R} meaning that $f: \mathbb{R} \to \mathbb{R}$ and

$$|f(x) - f(y)| \le |x - y|$$
, for all $x, y \in \mathbb{R}$

with strict inequality for some pair $x, y \in \mathbb{R}$. Prove that f(X) is L^2 -integrable and $Var(f(X) \mid \mathcal{G}) \leq Var(X \mid \mathcal{G})$ almost surely P.

- (c) Now assume that $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \cdots \subset \mathcal{G}$, where $\mathcal{G} = \sigma(\cup_n \mathcal{G}_n)$. Suppose $Y = \mathrm{E}(X \mid \mathcal{G})$ and let $Y_n = \mathrm{E}(X \mid \mathcal{G}_n)$. Assume $Y_n \to Y$ almost surely, as $n \to \infty$, and show that $\mathrm{E}((Y Y_n)^2) \to 0$.
- 2. A mean zero real random variable X is called sub-Gaussian if there exists a constant C > 0 such that

$$E(e^{tX}) \le e^{Ct^2}$$
 for all $t \in \mathbb{R}$. (1)

- (a) Determine whether the following random variables are sub-Gaussian:
 - i. $X \sim N(0, 1)$.
 - ii. $\Theta \sim \text{Uniform}(-1, 1)$.
 - iii. $W = X_1X_2$, where X_1 and X_2 are independent N(0,1) random variables.
- (b) For any real random variable Z, prove

$$P(Z \ge t) \le \inf_{\lambda > 0} e^{-\lambda t} E(e^{\lambda Z}), \text{ for all } t \ge 0.$$

Use this inequality (or other) to prove, for a sub-Gaussian random variable X satisfying (1), that

$$P(X \ge t) \le e^{-Kt^2}$$
, for all $t \ge 0$.

where K is a constant depending only on C.

(c) Let X_1, \ldots, X_n be independent sub-Gaussian random variables satisfying (1) with the same constant C. Let $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$. Prove that

$$P(\bar{X} \ge t) \le e^{-Knt^2}$$
, for all $t \ge 0, n \ge 1$.

for a constant K depending on C but not on n and t.