Name: \qquad
5326 Review (Debdeep Pati)
FSUID:
..

1	2	3	4	5	6	7	8	\sum

For each problem a maximum of $\mathbf{1 2}$ points can be earned. You get 4 points for writing the exam.
Work your problems in the space provided. Show all work clearly. Justify your answers. Draw a box around your final answer.
$1_{A}(x)=1$ if $x \in A$ and 0 otherwise. log denotes the natural logarithm with respect to base e.

1. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. $\mathrm{U}(0,1)$ random variables. For any positive integer n, define $V_{n}=n \min \left\{X_{1}, \ldots, X_{n}\right\}$, where min stands for minimum. [$\mathrm{U}(0,1)$ has p.d.f. $1_{(0,1)}(x)$]
(a) Find $\lim _{n \rightarrow \infty} P\left(V_{n} \geq 1\right)$.
(b) Write down the p.d.f. of V_{n}.

Page 3
2. Let $(X, Y) \sim N_{2}(0,0,1,1, \rho)$ for some $\rho \in(-1,1)$ with joint p.d.f.

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[x^{2}+y^{2}-2 \rho x y\right]}, \quad x, y \in \mathbb{R} .
$$

Consider the polar transform from (X, Y) to (R, Θ) so that $X=R \cos \Theta, Y=R \sin \Theta$ with $R>0$ and $\Theta \in(0,2 \pi)$.
(a) Find the joint p.d.f. of R and Θ.
(b) Find the marginal p.d.f. of Θ when $\rho=0$.

Page 4

3. A random trial can result in three possible outcomes: success (S), failure (F) and indeterminate (I), with probabilities $P(\{S\})=P(\{F\})=p$ and $P(\{I\})=1-2 p$, where $0<p<1 / 2$. Based on a single trial, define random variables W and Z as follows:

$$
W=\left\{\begin{array}{ll}
1 & \text { if outcome is } \mathrm{S} \text { or I } \\
0 & \text { otherwise. }
\end{array} \quad Z= \begin{cases}1 & \text { if outcome is F or I } \\
0 & \text { otherwise }\end{cases}\right.
$$

Find $\operatorname{cov}(W, Z)$.

Page 5
4. (a) Let X_{n} be a sequence of random variables with $X_{n} \sim \operatorname{Expo}(1 / n)$. Show that $X_{n} \xrightarrow{P} 0$. $[\operatorname{Expo}(\beta)$ p.d.f. is $\beta^{-1} e^{-x / \beta} 1_{(0, \infty)}(x)$]
(b) Let X_{n} be a sequence of random variables with $E\left(X_{n}\right)=\mu$ and $\operatorname{var}\left(X_{n}\right)=b_{n}$, where b_{n} is a sequence satisfying $\lim _{n \rightarrow \infty} b_{n}=0$. Show that $X_{n} \xrightarrow{P} \mu$.

Page 6
5. Let X and Y be independent $\operatorname{Expo}(\beta)$ random variables. $\left[\operatorname{Expo}(\beta)\right.$ p.d.f. is $\left.\beta^{-1} e^{-x / \beta} 1_{(0, \infty)}(x)\right]$ Consider the transformation $U=X+Y, V=Y$. Find the joint p.d.f. of U and V.

Page 7
6. (X, Y) has a joint p.d.f.

$$
f(x, y)= \begin{cases}15 x^{2} y & \text { if } 0<y<1 ; 0<x<y \\ 0 & \text { o.w. }\end{cases}
$$

(a) Find the conditional p.d.f. of $X \mid Y=y$ for $0<y<1$.
(b) Find the conditional p.d.f. of $Y \mid X=x$ for $0<x<1$.

Page 8
7. Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Poisson}(\lambda)$ and set $T_{n}=X_{1}+\ldots+X_{n}$. $\left[\operatorname{Poisson}(\lambda)\right.$ p.m.f. is $\left.e^{-\lambda} \lambda^{x} / x!, x=0,1, \ldots\right]$
(a) Find $E\left(T_{n}^{2}\right)$. [You may use that for $\left.Y \sim \operatorname{Poisson}(\lambda), E(Y)=\operatorname{var}(Y)=\lambda\right]$
(b) Find sequences a_{n}, b_{n} so that $\left(T_{n}-a_{n}\right) / b_{n}$ is approximately $N(0,1)$.

Page 9
8. For any positive real number x, let $\lfloor x\rfloor$ denote the largest non-negative integer less than or equal to x. For example, $\lfloor 0.3\rfloor=0,\lfloor 1.7\rfloor=1,\lfloor 2\rfloor=2$ etc.
Let $X \sim \operatorname{Expo}(1)$ with p.d.f. $e^{-x} 1_{(0, \infty)}(x)$. Find the distribution of $\lfloor X\rfloor$.
Hint: What is the support of $\lfloor X\rfloor$? Is it discrete or continuous?

Page 11

