Homework 1 solution

January 23, 2014

Theoretical problem

Let y denote the number of offsprings. Clearly, $P(A A)=1 / 3$. By Bayes' Theorem

$$
P(A A \mid y=3)=\frac{P(y=3 \mid A A) P(A A)}{P(y=3)}
$$

Also, since the offspring will definitely inherit 'A' if one of the parents is AA, $P(y=3 \mid$ $A A)=1$.
By the law of total probability, $P(y=3)=P(y=3 \mid A A) P(A A)+P(y=3 \mid A a) P(A a)$ $P(A a)=2 / 3$ and $P(y=3 \mid A a)=(1 / 2)^{3}=1 / 8$ Hence, $P(A A \mid y=3)=0.80$ and $P(A a \mid y=3)=0.20$.

Brief code for the applied problem

```
#Study to understand the effect of FEV on smoking adjusting for age
fevdat=read.table("fev.txt",header=T)
attach(fevdat)
aa=rep(0,654)
for (i in 1:654)
{ if (a[i]<=7){aa[i] = 0}
    if ((a[i]> 7) & (a[i] <= 12)){aa[i] = 1}
    if (a[i]> 12){aa[i] = 2}
}
aan=aa[smoke==0]
fevn=fev[smoke==0]
boxplot(fevn~aan)
aay=aa[smoke==1]
fevy=fev[smoke==1]
boxplot(fevy~}\mathrm{ aay)
```

