HWI solution for STAB327.
\# 3, 28 Show that each of the following families is an exponential family.
(a) normal family with either parameter μ or σ known.

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} x^{2}\right)
$$

i) μ known

$$
\left\{\begin{array}{l}
C\left(\sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} I_{(0, \infty)}\left(\sigma^{2}\right) \\
h(x)=1 \\
\omega_{1}\left(\sigma^{3}\right)=-\frac{1}{2 \sigma^{2}} \\
t_{1}(x)=(x-\mu)^{2}
\end{array}\right.
$$

(ii) ∇^{2} known,

$$
\left\{\begin{array}{l}
c(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right) \\
h(x)=\exp \left(-\frac{1}{2 \sigma^{2}} x^{2}\right) \\
\omega_{1}(\mu)=\mu \\
t_{1}(x)=\frac{1}{\sigma^{2}} x
\end{array}\right.
$$

(b) Gamma family with either parameter α on β known on both unknown

$$
\begin{aligned}
& \quad f(x \mid \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{\frac{-x}{\beta}}=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} e^{\frac{-x}{\beta}} \exp ((\alpha-1) \log x) \\
& (0 \leq x<\infty) \\
& \alpha, \beta>0
\end{aligned}
$$

i) α known

$$
C(\beta)=\frac{1}{\beta^{\alpha}}, \quad h(x)=\frac{x^{\alpha-1}}{\Gamma(\alpha)}(x>0), \omega_{1}(\beta)=\frac{1}{\beta}, \quad t_{1}(x)=-x
$$

\#3.28
(ii) β known,

$$
c(\alpha)=\frac{1}{\Gamma(\alpha) \beta \alpha}, \quad h(x)=e^{\frac{-x}{\beta}}(x>0), \quad \omega_{1}(\alpha)=\alpha-1, \quad t_{1}(x)=\log x
$$

(iii) α, β unknown

$$
\begin{array}{ll}
c(\alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}}, \quad h(x)=I(x>0), & \omega_{1}(\alpha)=\alpha-1, t_{1}(x)=\log x, \\
& \omega_{2}(\beta)=-\frac{1}{\beta}, \\
t_{2}(x)=x .
\end{array}
$$

(c) beta family with either parameter α or f known or both unknown.

$$
\begin{aligned}
f(x \mid \alpha, \beta) & =\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad 0 \leq x \leq 1 \quad \alpha, \beta>0 \\
& =\frac{1}{B(\alpha, \beta)} \exp ((\alpha-1) \log x) \exp ((\beta-1) \log (1-x)) \\
& =\frac{1}{B(\alpha, \beta)} \exp ((\alpha-1) \log x+(\beta-1) \log (1-x))
\end{aligned}
$$

i) a known,

$$
c(\beta)=\frac{1}{B(\alpha, \beta)}, \quad h(x)=x^{\alpha-1} I_{[0,1]}(x), \omega,(\beta)=\beta-1 ; t_{1}(x)=\log (1-x) .
$$

ii) β known,

$$
C(\alpha)=\frac{1}{B(\alpha, \beta)}, \quad h(x)=(1-x)^{\beta-1} I_{[0,0}(x), \quad \omega_{1}(\alpha)=\alpha-1, \quad t_{1}(x)=\log x
$$

(iii) α, β unknown

$$
\begin{array}{ll}
C(\alpha, \beta)=\frac{1}{B(\alpha, \beta)}, & h(x)=I_{[0,1]}(x), \\
& \omega_{1}(\alpha)=\alpha-1, \\
t_{1}(x)=\log x, \\
& \omega_{2}(\beta)=\beta-1, \\
t_{2}(x)=\log (1-x) .
\end{array}
$$

\#3. 28
(d) Posson family

$$
\begin{gathered}
P(x=x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x_{i}^{\prime}}=\frac{e^{-\lambda} e^{(x \log \lambda)}}{x_{i}} \\
c(\lambda)=e^{-\lambda}, \quad h(x)=\frac{1}{x_{i}} I_{\{0,1, \ldots\}}(x), \quad \omega_{1}(\lambda)=\log \lambda, \quad t_{1}(x)=x .
\end{gathered}
$$

(e) negative binomial family with re known, $0<p<1$

$$
\begin{aligned}
p(x=x \mid r, p) & =\binom{x-1}{r-1} p^{r}(1-p)^{x-r}, \quad x=0,1,2, \ldots, \quad 0<p<1 \\
& =\binom{x-1}{r-1}\left(\frac{p}{1-p}\right)^{r} \exp (x \log (1-p)) \\
c(p)=\left(\frac{p}{1-p}\right)^{r}, \quad h(x) & =\binom{x-1}{r-1} I_{\{0,1, \ldots\}}(x), \omega_{1}(p)=\log (1-p), t_{1}(x)=x .
\end{aligned}
$$

\#3.29 For each family in EX 3.28, describe the natural parameter space.
(a) For $N\left(\mu, v^{3}\right)$,

$$
f(x)=\frac{1}{\sqrt{2 \pi}}\left(\frac{e^{-\mu^{2} / 2 \sigma^{2}}}{\sigma}\right) e^{\left(-x^{2} / 2 \sigma^{2}+x \mu / \sigma^{2}\right)}
$$

Then the natural parameter is $\left(\lambda_{1}, \lambda_{2}\right)=\left(-\frac{1}{2 \sigma^{2}}, \frac{\mu}{v^{2}}\right)$ with the natural paraureter space. $\left\{\left(\lambda_{1}, \lambda_{2}\right): \lambda_{1}<0,-\infty<\lambda_{2}<\infty\right\}$.
(b) For $\operatorname{Gamma}(\alpha, \beta)$,

$$
f(x)=\left(\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\right) e^{((\alpha-1) \log x-x / \beta)}
$$

Then the natural parameter is $\left(\lambda_{1}, \lambda_{2}\right)=(\alpha-1,-1 / \beta)$ with the natural parameter space $\left\{\left(\lambda_{1}, \lambda_{2}\right): \lambda_{1}>-1, \lambda_{2}<0\right\}$.
(c) For $\operatorname{Beta}(\alpha, \beta)$,

$$
f(x)=\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \nabla(\beta)}\right)\left(e^{(\alpha-1) \log x+(\beta-1) \log (1-x)}\right)
$$

Then the natural parameter is $\left(\lambda_{1}, \lambda_{2}\right)=(\alpha-1, \beta-1)$ with the natural parameter space $\left\{\left(\lambda_{1} \lambda_{2}\right): \lambda_{1}>-1, \lambda_{2}>-1\right\}$.
(d) For Poisson (θ),

$$
f(x)=\left(\frac{1}{x!}\right)\left(e^{-\theta}\right) e^{x \log \theta}
$$

Then the natural parameter is $\lambda=\log \theta$ with the natural parameter space $\{\lambda:-\infty<\theta<\infty\}$
(e) For Negative Binomial $(r, p), r$ known,

$$
P(X=x)=\binom{\gamma+x+1}{x} P^{r} e^{x \log (1-p)} \quad \begin{aligned}
& \text { so the natural parameter is } \lambda=\log (1-p) \\
& \text { with its space }\{\lambda: \lambda<0\} .
\end{aligned}
$$

\#3.30 Use the identities of Theorem 3.4.2 to
(a) Calculate the variance of a binomial random variable

$$
\begin{aligned}
& f(x \mid p)=\binom{n}{x} p^{x}(1-p)^{n-x}=\binom{x}{x}(1-p)^{n} \exp \left(x \log \left(\frac{p}{1-p}\right)\right) \\
& h(x)=\left\{\begin{array}{cc}
\binom{n}{x} & x=0,1,2, \ldots, x \\
0 & 0 . w .
\end{array}\right. \\
& c(p)=(1-p)^{n}, \quad 0<p<1
\end{aligned}
$$

$\operatorname{aos}_{1}(p)=\log \left(\frac{p}{1-p}\right), 0<p<1$ and $A_{1}(x)=x$

By Theorem 3.4.2,

$$
\begin{aligned}
& \operatorname{Var}\left[\sum_{i=1}^{k} \frac{\partial w_{i}(\theta)}{\partial \theta_{j}} t_{i}(X)\right]=-\underbrace{-\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log C(\theta)-E[\underbrace{\sum_{i=1}^{k} \frac{\partial^{2} w_{i}(\theta)}{\partial \theta_{j}^{2}} t_{i}(x)}_{\text {part }(a)}]}_{\text {par }(b)} \begin{array}{l}
\text { By Quotient Rule }
\end{array} \\
& \text { i) For the part (a), }
\end{aligned}
$$

$$
\begin{aligned}
&-E\left[\frac{\partial^{2}}{\partial p^{2}} \log \left(\frac{p}{1-p}\right) x\right]=-E\left[\frac{\partial}{\partial p}\left(\frac{1-p}{p(1 p)^{2}}\right) x\right] \quad\left(\frac{p}{1-p}\right)^{\prime} \\
&=\frac{(1 p)-p(-1)}{(1-p)^{2}} \\
&=\frac{1}{(1 p)^{2}} \\
&=-E\left[\frac{\partial}{\partial p}\left(\frac{1}{p-p^{2}}\right) x\right]=-E\left[\frac{(2 p-1)}{p^{2}(1-p)^{2}} x\right]=\frac{n(1-2 p)}{p(1 p)^{2}} \quad(\because E x=n p,
\end{aligned}
$$

ii) For the part (b)

$$
-\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log C(\theta)=-\frac{\partial^{2}}{\partial p^{2}}(n \log (1-p))=-n\left(\frac{\partial}{\partial p}\left(\frac{-1}{1-p}\right)\right)=\frac{n}{(1-p)^{2}}
$$

Therefore,

$$
\operatorname{Var}\left(\frac{\partial}{\partial p} \log \left(\frac{p}{1-p}\right) x\right)=\frac{n}{(1-p)^{2}}+\frac{n(1-2 p)}{p(1-p)^{2}}=\frac{n[p+(1-2 p)]}{p(1-p)^{2}}=\underset{(0<p<1)}{\frac{n}{p(1-p)}}
$$

\# 3.30
(b) Calculate the mean and variance of a Poisson (λ) random variable

$$
\begin{array}{cl}
\because P(x=x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} & x=0,1,2, \ldots \\
c(\lambda)=e^{-\lambda}, & h(x)=\frac{1}{x!} I_{10,1, \ldots . x)}^{(x)}, \quad \omega_{1}(\lambda)=\log \lambda, \quad t_{1}(x)=x .
\end{array}
$$

I) Variance of a Poisson (λ).

Simily solve. Then we can decompose $\operatorname{Var}\left[\sum_{i=1}^{k} \frac{\partial w_{i}(\theta)}{\theta_{j}^{2}} t_{i}(x)\right]$
into two pants. into two parts.
(i) For the part (a),

$$
-E\left[\frac{\partial^{2}}{\partial \lambda^{2}}(\log \lambda) x\right]=-E\left[\frac{\partial}{\partial \lambda}\left(\frac{1}{\lambda}\right) x\right]=-E\left[-\frac{1}{\lambda^{2}} x\right]=\frac{1}{\lambda^{2}} E(x)=\frac{\lambda}{\lambda^{2}}=\frac{1}{\lambda}
$$

(ii) For the part (b),

$$
-\frac{\partial^{2}}{\partial \lambda^{2}} \log e^{-\lambda}=-\frac{\partial^{2}}{\partial x^{2}}(-\lambda)=\frac{\partial}{\partial \lambda} \cdot 1=0
$$

Thus

$$
\operatorname{Var}\left[\frac{\partial}{\partial \lambda}(\log \lambda) x\right]=\frac{1}{\lambda} \quad(\lambda>0)
$$

II) mean of a Poisson (λ).

By Theorem 3.4.2,

$$
E\left[\sum_{i=1}^{k} \frac{\partial \omega_{i}(\theta)}{\partial \theta_{j}} t_{i}(x)\right]=-\frac{\partial}{\partial \theta_{j}}(\log C(\theta))=-\frac{\partial}{\partial \lambda}\left(\log e^{-\lambda}\right)=\frac{\partial}{\partial \lambda} \lambda=1
$$

\#3.32
(a) Let $w_{i}(\theta)=\theta_{i} \quad \forall i$

$$
\begin{aligned}
& \quad \frac{\partial \eta_{i}}{\partial \theta_{j}}=\delta_{i j} \quad \text { (Dirac delta function) } \quad \delta_{i j}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j \\
W(\theta) & =\left(w_{1}(\theta), w_{2}(\theta), \cdots, w_{k}(\theta)\right) \\
\begin{array}{l}
\text { vector } \\
(\theta)
\end{array} \\
\quad \theta\left(\theta_{1}, \theta_{2}, \cdots, \theta_{k}\right)\end{cases}
\end{aligned}
$$

$\Leftrightarrow \eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{k}\right)$ natural parameter.
(1) $\sum_{i=1}^{k} \frac{\partial w_{i}(\theta)}{\partial \theta_{j}} t_{i}(x)=\sum_{i=1}^{k} \frac{\partial \theta_{i}}{\partial \theta_{j}} t_{i}(x)=\sum_{i=1}^{k} \delta_{i j} t_{i}(x)=1 \cdot t_{j}(x)$
(2) $\sum_{i=1}^{k} \frac{\partial^{2} w_{i}(\theta)}{\partial \theta_{j}^{2}} t_{i}(x)=\frac{\partial}{\partial \theta_{j}}\left(1 \cdot t_{j}(x)\right)=0$

Thus, the identities of Theorem 3.4 .2 simplify to

$$
\begin{aligned}
& E\left(t_{j}(x)\right)=-\frac{\partial}{\partial \eta_{j}} \log c^{*}(\eta) \\
& \operatorname{Var}\left(t_{j}(x)\right)=-\frac{\partial^{2}}{\partial \eta_{j}^{2}} \log c^{*}(\eta)
\end{aligned}
$$

\#3.32
(b) Gamma pdf

$$
\begin{aligned}
& f(x \mid a, b)=\frac{1}{\Gamma(a) b^{a}} \exp \cdot\left(\sim_{(a-1)}^{\left(\log x-\frac{1}{b} x\right),} \begin{array}{l}
\quad x>0 \\
a, b>0
\end{array}\right. \\
& C(\theta)=\frac{1}{\Gamma(a) b^{a}}, \theta=(a, b) \quad \exp \left(\theta_{1} \log x+\theta_{2} x\right)
\end{aligned}\left\{\begin{array}{l}
t_{1}(x)=\log x \\
t_{2}(x)=x
\end{array}\right.
$$

Let $\theta_{1}=a-1 \Rightarrow a=\theta_{1}+1$
$(\theta,>-1)$

$$
\theta_{2}=-\frac{1}{b} \quad \Rightarrow \quad b=-\frac{1}{\theta_{2}} \quad\left(\theta_{2}<0\right)
$$

$$
\begin{aligned}
& C^{*}(\theta)= \frac{1}{\Gamma\left(\theta_{1}+1\right)\left(-\frac{1}{\theta_{2}}\right)^{\theta_{1}+1}}, \theta=\left(\theta_{1}, \theta_{2}\right) \\
& E\left(t_{2}(x)\right)=E(x)=-\frac{\partial}{\partial \theta_{2}} \log C^{*}(\theta)=-\frac{\partial}{\partial \theta_{2}}\left[-\log \Gamma\left(\theta_{1}+1\right)-\left(\theta_{1}+1\right) \log \left(-1 / \theta_{2}\right)\right] \\
&=\frac{\partial}{\partial \theta_{2}}\left[\Gamma\left(\theta_{1}+1\right)-\left(\theta_{1}+1\right) \log \left(-\theta_{2}\right)\right] \\
&=\left(\theta_{1}+1\right) \frac{1}{-\theta_{2}} \\
&=(a-1+1) \frac{1}{-\left(-\frac{1}{b}\right)}=a b \\
& \operatorname{Var}\left(t_{2}(x)\right)=-\frac{\partial^{2}}{\partial \theta_{2}^{2}} \log C^{*}(\theta)=\frac{\partial}{\partial \theta_{2}}\left[\left(\theta_{1}+1\right)\left(\frac{-1}{\theta_{2}}\right)\right]=\left(\theta_{1}+1\right)\left(\frac{1}{\theta_{2}^{2}}\right) \\
&=(a-1+1)(-b)^{2}=a b^{2}
\end{aligned}
$$

\#3.37 Given a puff is symmetric about 0 . Them μ is the median of the location-scale pdf $\frac{1}{\sigma} f\left(\frac{(x-\mu)}{\sigma}\right), \quad-\infty<x<\infty$

We know that the pdf is symmetric about $0 . \Rightarrow f_{x}(c)=f_{x}(-c)$ for any c.

$$
\begin{aligned}
& \text { For } \epsilon>0, \\
& \frac{1}{\nabla} f\left(\frac{(\mu+\varepsilon)-\mu}{\sigma}\right)=\frac{1}{\sigma} f\left(\frac{\varepsilon}{v}\right)=\frac{1}{r} f\left(\frac{-\varepsilon}{\sigma}\right)
\end{aligned}
$$

because f is symmetric about 0

$$
=\frac{1}{\theta} f\left(\frac{(\mu-\varepsilon)-\mu}{\sigma}\right)
$$

Thus, the location -scale pdf is symmetric about M.
But from $E \times 2.26(b)$, we know that if $f(x)$ is symmetric about μ for a constant μ, then μ is the median of x.

Hence, M is the median of the location-scale pdf.
\#3.38. Let z a riv. with puff $f(z)$.
Define $\quad \alpha=P\left(z>z^{\alpha}\right)=\int_{z \alpha}^{\infty} f(z) d z$
Given $\left\{\begin{array}{l}x_{\alpha}=\sigma z_{\alpha}+\mu \\ f(x)=\frac{1}{v} f\left(\frac{x-\mu}{\sigma}\right)\end{array}\right.$
We want to show $P\left(x>x_{\alpha}\right)=\alpha$.
we know

$$
\begin{aligned}
P\left(x>x_{\alpha}\right) & =P(r z+\mu>r z \alpha+\mu) \\
& =P\left(z>z_{\alpha}\right)=\alpha \quad \text { by Theorem 3,5.6. }
\end{aligned}
$$

\#3.39 location-scale
Cauchy pdf

$$
f(x \mid \mu, \nabla)=\frac{1}{\nabla \pi\left(1+\left(\frac{x-\mu}{\sigma}\right)^{2}\right)}, \quad-\infty<x<\infty
$$

(a) μ is the median of the distribution of x, that is,

$$
p(x \geq \mu)=p(x \leq \mu)=\frac{1}{2} .
$$

We know that if the pdf is symmetric about O, then O must be the median from $E x 3,33$ Set $\mu=0$ and $\sigma=1$.

$$
\begin{aligned}
P(x \geq 0)=P(z \geq 0) & =\int_{0}^{\infty} \frac{1}{\pi} \frac{1}{\left(1+z^{2}\right)} d z . \\
\left(\because z=\frac{x-\mu}{\sigma}=x\right) & =\left.\frac{1}{\pi} \tan ^{-1}(z)\right|_{0} ^{\infty}=\frac{1}{\pi}\left(\frac{\pi}{2}-0\right)=\frac{1}{2} .
\end{aligned}
$$

since $P(x \geq \mu)=\frac{1}{2}$ for. μ, μ is the median of $f(x)$.
(b) $\mu+\sigma$ any, $M-\sigma$ are the quantiles of the distribution of X, that is,

$$
P(x \geq \mu+\sigma)=P(X \leq \mu-\sigma)=\frac{1}{4} .
$$

Set $\mu=0$ and $r=1$. Then we have

$$
P(z \geq 1)=\left.\frac{1}{\pi} \tan ^{-1}(z)\right|_{1} ^{\infty}=\frac{1}{\pi}\left(\frac{\pi}{2}-\frac{\pi}{4}\right)=\frac{1}{4} .
$$

By the part (a), we know the pdf is symmetric about 0 , wo $p(z \geq 0)=p\left(\frac{x-\mu}{\sigma} \geq 0\right)=p(x \geq \mu)=\frac{1}{2}$ and we just obtained that $p(z \geq 1)=p\left(\frac{x-\mu}{\sigma} \geq 1\right)=p(x \geq \mu+\sigma)=\frac{1}{4}$.

By symmetry, $\frac{1}{4}=p(x \geq \mu+\sigma)=p(z \geq 1)=p(z \leq-1)=p(x \leq \mu-\sigma)=\frac{1}{4}$. Thus, $\mu+\sigma$ and $\mu-\sigma$ are the quantiles of $f(x)$.

Chat 6
\# 6.1 Let $x \sim N\left(0,0^{2}\right)$
By. Factorization Theorem, (x) is sufficient since $T(x) \sim N\left(0,0^{2}\right)$.
Let $T(x)=|x| . \quad f\left(x \mid \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-x^{2} / 2 \sigma^{2}}=\frac{1}{\sqrt{2 \pi \sigma}} e^{-|x|^{2} / 2 \sigma^{2}}=g\left(T(x) \mid \sigma^{2}\right) \cdot \frac{1}{\omega_{(x)}}$
\#6.2

$$
f_{x_{i}}(x \mid \theta)= \begin{cases}e^{i \theta-x}, & x \geq i \theta \\ 0 & x<i \theta\end{cases}
$$

Let $T(x)=\min _{i}\left(\frac{x_{i}}{i}\right)$
The joint pd ff

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \cdots, x_{n} \mid \theta\right) & =\prod_{i=1}^{n} e^{\left(\theta-x_{i}\right)} I_{[i \theta, \infty)}\left(x_{i}\right) \quad(\underline{c i>0)} \\
& =\underbrace{}_{\underbrace{e^{i n \theta} I_{[i \theta, \infty)}(T(x))}_{(T(x) \mid \theta)} \underbrace{e^{-\sum x_{i}}}_{h(x)}} \text { by factonzation }
\end{aligned}
$$

Note that all $x_{i}>i \theta$ is satisfied iff $\min _{i}\left(\frac{x_{i}}{i}\right)>\theta$.
Thus, $T(x)$ is sufficient for θ
\#6.3 Let $x_{(1)}=\min _{i} x_{i}$. Then we have the joint pdf

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n} \mid \mu, \sigma\right)=\prod_{i=1}^{n} \frac{1}{\sigma} e^{-\left(x_{i}-\mu\right) / \sigma}, \frac{\mu<x<\infty}{0<\sigma<\infty} \\
&=\frac{1}{\sigma n} \cdot e^{-\sum_{i=1}^{n}\left(x_{i}-\mu\right) / \sigma} \\
&=\left(\frac{e^{\mu} \sigma}{\sigma}\right)^{n} e^{-\sum_{i=1}^{n} x_{i}} I_{(\mu, \infty)}\left(x_{(1)}\right) \cdot \underbrace{1}_{n(x)} \\
&\left.\left(x_{(1)}, \sum_{i=1}^{n} x_{i}\right) \text { is a sufficient stat) } \sum_{i=1}^{n} x_{i} \mid \mu, \sigma\right)
\end{aligned}
$$

Thus, $\left(X_{(1)}, \sum_{i=1}^{n} x_{i}\right)$ is a sufficient statistic fin $(11, \nabla)$ by the Factorization Theorem.
\#6.4 Prove Theorem 6.2.10.
Let $x_{1}, \ldots, x_{n} \stackrel{i i d}{\sim}$ apdfor poof exponential family given by

$$
f(x \mid \theta)=h(x) c(\theta) \exp \left[\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right] \text {, where } \theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right) \text { for } d \leq k \text {. }
$$

Then the joint pdf of $f(x \mid \theta)$ is

$$
\begin{aligned}
\prod_{j=1}^{n} f\left(x_{j} \mid \theta\right) & =\prod_{j=1}^{n} h\left(x_{j}\right) c(\theta) \exp \left\{\sum_{i=1}^{k} \omega_{i}(\theta) t_{i}\left(x_{j}\right)\right\} \\
& =\underbrace{c(\theta)^{n} \exp \left\{\sum_{i=1}^{k} \omega_{i}(\theta) \sum_{j=1}^{n} t_{i}\left(x_{j}\right)\right\}}_{g(T(x) \mid \theta)}\} \underbrace{\prod_{j=1}^{n} h\left(x_{j}\right)}_{h(x)}
\end{aligned}
$$

where $T(x)=\left(\sum_{i=1}^{k} \sum_{j=1}^{n} t_{i}\left(x_{j}\right)\right)=\left(\sum_{j=1}^{n} t_{1}\left(x_{j}\right), \sum_{j=1}^{n} t_{2}\left(x_{j}\right), \ldots, \sum_{j=1}^{n} t_{k}\left(x_{j}\right)\right)$
Thus $T(x)$ is a sufficient statistic for θ by the Factorization Theorem.
\#6.5 Let x_{1}, \ldots, x_{n} are independt $r_{0}, v_{\text {. with a pdf is given }}$ by $f\left(x_{i} \mid \theta\right)=\left\{\begin{array}{cc}\frac{1}{2 i \theta} & -i(\theta-1)<x_{i}<i(\theta+1) \\ 0 & 0 . w\end{array} \quad(\quad \theta>0)\right.$

Then the joint pdf of $f\left(x_{i} \mid \theta\right)$ is

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{2 i \theta} I_{\left(-i(\theta-1)<x_{i}<i(\theta+1)\right)} \\
& =\underbrace{\left(\frac{1}{2 \theta}\right)^{x}\left(\prod_{i=1}^{n} \frac{1}{i}\right) I_{\left(\min _{i n} \frac{x_{i}}{i} \geq-(\theta-1)\right)} I_{\left(\max _{i} \frac{x_{i}}{i} \leq \theta+1\right)}}_{g\left(\min _{i\left(x_{i}\right.}^{i}\right), \max _{i}\left(\frac{x_{i}}{i}\right)(\theta)}{ }_{h(x)}^{i} \\
& \left\{\begin{array}{lc}
i(\theta-1)<x_{i}<i(\theta+1) \\
-(\theta-1)<\frac{x_{i}}{i}<(\theta+1) \\
\uparrow & \uparrow \\
\min \left(\frac{x_{i}}{i}\right) & \max \left(\frac{x_{i}}{i}\right)
\end{array}\right.
\end{aligned}
$$

Thus, $\left(\min _{i}\left(\frac{x_{i}}{i}\right), \max _{i}\left(\frac{x_{i}}{i}\right)\right)$ is a sufficient statistic for θ.
\#6.6 Let $x_{1}, \ldots, x_{n} \sim \operatorname{G}_{\text {amman }}(\alpha, \beta)$
Garmmapdf is $f(x \mid \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x \alpha-1 e^{-x / \beta} \quad(x \geq 0, \alpha, \beta>0)$
Then the joint pdf of $f(x \mid \alpha, \beta)$ is

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} \mid \alpha, \beta\right)= & \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha) \beta \alpha} x_{i}^{\alpha-1} e^{-x_{i} / \beta} \\
= & \left(\frac{1}{\left.\Gamma(\alpha) \beta^{\alpha}\right)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha-1} e^{-\sum_{i=1} x_{i} / \beta} \cdot 1} \sim^{\sim} \prod_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i} \mid \alpha, \beta\right)
\end{aligned}
$$

Thus $\left(\prod_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}\right)$ is sufficient for (α, β).
\#6. x Assume x and y are independent.
continuous

$$
\begin{aligned}
\begin{array}{l}
\text { Uniform } \\
\text { Untinuar }
\end{array} f\left(x \mid \theta_{1}, \theta_{3}\right) & =\frac{1}{\theta_{3}-\theta_{1}} \\
f\left(y \mid \theta_{2}, \theta_{4}\right) & =\frac{1}{\theta_{4}-\theta_{2}}
\end{aligned}\left(\theta_{1} \leqslant x \leq \theta_{3}\right) .
$$

The bivariate pdf is

$$
f\left(x, y \mid \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=\frac{1}{\left(\theta_{3}-\theta_{1}\right)} I_{\left(\theta_{1}, \theta_{3}\right)}(x) \frac{1}{\left(\theta_{4}-\theta_{2}\right)} I_{\left(\theta_{2}, \theta_{4}\right)}(y)
$$

Thus, $x_{(1)}, x_{(n)}, y_{(1)}$ and $\left.y_{(n)}\right)$ is sufficient statisticic for $(\theta$, $\theta_{2}, \theta_{3}, \theta_{4}$).

Then the joint puff of $f\left(x_{2}, y \mid \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$ is
where $x_{(1)}=\min \left\{x_{i=1}^{n}, \quad x_{(n)}=\max \left\{x_{i}\right\}_{i=1}^{n}, y_{(1)}=\min \left\{y y_{i}^{n}\right.\right.$ and $y_{(n)}=\max \{y\}_{i=1}^{n}$.

STA5327: EX 3.36 for Homework 1

Figure 1: $\mu=0, \sigma=1$

Figure 2: $\mu=3, \sigma=1$

The location-scale pdf graph for $\mathrm{mu}=3$, simga=2

Figure 3: $\quad \mu=3, \sigma=2$

