Problem I

Consider the binary regression model $P\left(y_{i}=1 \mid x_{i}, \beta\right)=\Phi\left(x_{i}^{\prime} \beta\right), i=1, \ldots, n$ where y_{i} 's are binary random variables, x_{i} 's are p-dimensional covariates and β is a p-dimensional coefficient vector. Introduce the auxiliary variable $z_{i} \sim \mathrm{~N}\left(x_{i}^{\prime} \beta, 1\right)$ and set $y_{i}=I\left(z_{i}>0\right)$. Assume $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}, \mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)^{\prime}, X$ is the $n \times p$ covariate matrix. Consider a point mass prior on β

$$
\pi(\beta)=\prod_{j=1}^{p}\left\{\delta_{0}\left(\beta_{j}\right) p_{0 j}+\left(1-p_{0 j}\right) N\left(\beta_{j} ; 0, c_{j}^{2}\right)\right\}
$$

where $p_{0 j}$ is the prior probability of excluding the j-th predictor by setting its coefficient to 0 . Show that the conditional posterior of β_{j}, for $j=1, \ldots, p$, is given by

$$
\pi\left(\beta_{j} \mid \beta_{-j}, \mathbf{z}, \mathbf{y}, X\right)=\hat{p}_{j} \delta_{0}\left(\beta_{j}\right)+\left(1-\hat{p}_{j}\right) \mathrm{N}\left(\beta_{j} ; E_{j}, V_{j}\right)
$$

where $V_{j}=\left(c_{j}^{-2}+X_{j}^{\prime} X_{j}\right)^{-1}, E_{j}=V_{j} X_{j}^{\prime}\left(\mathbf{z}-X_{-j} \beta_{-j}\right), X_{j}=j$ th column of $X, X_{-j}=X$ with j th column excluded, $\beta_{-j}=\beta$ with j th element excluded, and

$$
\hat{p}_{j}=\frac{p_{0 j}}{p_{0 j}+\left(1-p_{0 j}\right) \frac{\left.N 0 ; 0, c_{j}^{2}\right)}{N\left(0 ; E_{j}, V_{j}\right)}}
$$

is the conditional probability of $\beta_{j}=0$. Here $N\left(x ; \mu, \sigma^{2}\right)$ denotes the normal density with mean μ, variance σ^{2} evaluated at x.

Problem II

Simulate data from a binary regression model with $p=7$ (including the intercept), $n=100$, $x_{i j} \sim \mathrm{U}(0,1)$ and the intercept and the slope for $x_{i 2}$ as the only non-zero coefficients. Using a point-mass mixture prior as in Problem I with $c_{j}=1$ and $p_{0 j}=1 / 2$, run a data augmentation Gibbs sampler for 5,000 iterations after discarding the first 2,000 as burnin. Summarize posterior mean, median, credible interval and exclusion probabilities of the parameters and the top 10 highest posterior probability models. Calculate the percentage of the visited models. Increase p to 200 with only the first two active predictors (including intercept) and repeat the analysis.

