Hw1 for 6448 (due Feb 7) (Debdeep Pati)

- 1. Suppose (X_n, \mathcal{F}_n) is an adapted L_1 sequence and $E(X_{n+1} | \mathcal{F}_n) = a_n X_n + b_n$ for sequences $a_n, b_n \in \mathbb{R}$. How to convert it to a martingale?
- 2. $(X_n, \mathcal{F}_n)_{n \ge 0}$ is a martingale. Let $\mathcal{F}_{\infty} = \sigma(\bigcup_{n \ge 0} \mathcal{F}_n)$ and $\sup E |X_n| = K$. $(E |X_n| \uparrow K$ since $|X_n|$ is a submartingale). Then the following are equivalent.
 - (a) $K < \infty, X_n \xrightarrow{L_1} X_\infty$.
 - (b) $(X_n, \mathcal{F}_n)_{0 \le n \le \infty}$ is a martingale.
 - (c) $K < \infty, E |X_{\infty}| = K.$
 - (d) $\{X_n\}_{n>0}$ is uniformly integrable.

Explain clearly all the steps in your proof.

- 3. Let p > 1. $\{X_n\}$ is L_p -bounded martingale or a non-negative sub-martingale. Then
 - (a) $\{X_n\}$ is uniformly integrable.
 - (b) $X_n \stackrel{L_p}{\to} X_\infty$.

Show with a counter-example that one cannot get rid of the non-negativity in case of sub-martingale.

- 4. Simulate a branching process as follows: Start with 1 member, namely the population size is $Z_0 = 1$. Let $\xi_i^n, i = 1, 2, ..., n$ denote the number of children of *i*th individual in the *n*th generation. Assume $\xi_i^n \stackrel{iid}{\sim}$ Poisson(μ). Let Z_n denote the population size in the *n*th generation. It is shown in class that $X_n = Z_n/\mu^n$ defines a martingale. Plot X_n and Z_n with respect to n = 1, 2, ..., 500 in the following cases:
 - (a) $\mu = 0.5$
 - (b) $\mu = 1$
 - (c) $\mu = 1.5$

Explain the observations particularly the case $\mu = 1.5$. Attach your code with the homework.