Hw2 for 6448 (due March 3) (Debdeep Pati)

- 1. Suppose we want to sample from $N_p(\mu, \Sigma)$ where $\mu = \Sigma \Phi^T \alpha$ and $\Sigma = (\Phi^T \Phi + D^{-1})^{-1}$ where $D \in \mathbb{R}^{p \times p}$ a symmetric positive definite matrix, $\Phi \in \mathbb{R}^{n \times p}$ and $\alpha \in \mathbb{R}^{n \times 1}$. Prove that the following algorithm generates a sample $\theta \sim N_p(\mu, \Sigma)$.
 - (a) Sample $u \sim N(0, D)$ and $\delta \sim N(0, I_n)$.
 - (b) Set $v = \Phi u + \delta$.
 - (c) Solve $(\Phi D \Phi^{\mathrm{T}} + I_n)w = (\alpha v)$.
 - (d) Set $\theta = u + D\Phi^{\mathrm{T}}w$.
- 2. Generate n observations from

 $0.5 \operatorname{N}(0, 1) + 0.5 \exp(\operatorname{mean} = 2).$

Then $EX_1 = \mu_0 = 1$. Test $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$ at 5% using significance level using

- (a) Standard normal approximation.
- (b) Empirical likelihood.

Try n = 50,200. Find 0.05% confidence intervals of μ in all the cases using i) Bootstrap and ii) χ^2 approximation.

3. Find confidence intervals for 0.25, 0.5 and 0.75-quantiles in the previous example when n = 50, 200. Compare with the asymptotic normal confidence intervals for quantiles (can be derived following a similar exercise as in Problem 1).