Hw2 for 6448 (due Feb 23) (Debdeep Pati)

Bahadur's representation of sample quantiles: Let X_1, \ldots, X_n be independent and identically distributed random variables with cdf $F(x) = P(X_i \leq x)$ and pdf f(x). For $0 , let <math>\xi_p = \inf\{x : F(x) \geq p\}$ denote the *p*-th quantile of *F*. Denote the empirical distribution function by

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i \le x}$$

Denote by $\xi_{n,p}$ the *p*th quantile of F_n . Bahadur (1966) showed that if $f(\xi_p) > 0$,

$$\xi_{n,p} = \xi_p + \frac{p - F_n(\xi_p)}{f(\xi_p)} + Y_n$$

where Y_n is a random variable satisfying $|Y_n| = o(n^{-1/2})$ almost surely. Recall $a_n \sim o(b_n)$ iff $a_n/b_n \to 0$.

- 1. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables from distribution F(x) that has density f(x). Let μ be the mean and η be the median of the distribution. Furthermore, let \bar{X} be the sample mean and \tilde{X} be the sample median. Assume F has a finite variance σ^2 , F''(x) exists at η and $f(\eta) > 0$.
 - (a) Show that the asymptotic covariance between \bar{X} and \tilde{X} is $\frac{E(|X-\eta|)}{2nf(\eta)}$ and derive the asymptotic bivariate distribution for $(\bar{X}, \tilde{X})^{\mathrm{T}}$.
 - (b) Assume $\mu \neq 0$ and find the asymptotic distribution for $V_n = \tilde{X}/\bar{X}$.
 - (c) Assume $\eta = \mu$ and let $T_n = c\bar{X} + (1-c)\bar{X}$. Find the value of c that minimizes the asymptotic variance of T_n . Discuss how c could be estimated to get an estimator for μ .
- 2. Generate n observations from

$$0.5 \operatorname{N}(0, 1) + 0.5 \exp(\operatorname{mean} = 2).$$

Then $EX_1 = \mu_0 = 1$. Test $H_0: \mu = \mu_0$ vs. $H_1: \mu > \mu_0$ at 5% using significance level using

- (a) Standard normal approximation.
- (b) Empirical likelihood.

Try n = 50,200. Find 0.05% confidence intervals of μ in all the cases using i) Bootstrap and ii) χ^2 approximation.

3. Find confidence intervals for 0.25, 0.5 and 0.75-quantiles in the previous example when n = 50, 200. Compare with the asymptotic normal confidence intervals for quantiles (can be derived following a similar exercise as in Problem 1).