Hw2 - Problem 1 Solutions

March 2, 2016

1(a) Since $F^{\prime \prime}(x)$ exists at η and $f(\eta)>0$, we have by the Bahadur representation that

$$
\tilde{X}-\eta=\frac{\frac{1}{2}-F_{n}(\eta)}{f(\eta)}+o_{p}\left(n^{-1 / 2}\right)
$$

where $F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{X_{i} \leq x\right\}}$ is the empirical distribution function. Thus, the asymptotic distribution of $\tilde{X}-\eta$ s the same as that of $\bar{Y}=\frac{\frac{1}{2}-F_{n}(\eta)}{f(\eta)}$, which is $N\left(0,1 /\left[n(2 f(\eta))^{2}\right]\right)$ by the CLT.

By the CLT, the asymptotic distribution of $(\bar{X}, \bar{Y})^{\prime}$ is

$$
\operatorname{Normal}\left\{(\mu, 0)^{\prime},\left[\sigma^{2} / n, \gamma / n ; \gamma / n, 1 /\left[n(2 f(\eta))^{2}\right]\right]\right\}
$$

where $\gamma=\operatorname{Cov}\left(X_{1},-\frac{1}{f(\eta) I_{\{x \leq \eta\}}}\right)$. We can calculate γ as follows:

$$
\begin{aligned}
\gamma & =-\frac{1}{f(\eta)} \int_{-\infty}^{\infty} x I_{\{x \leq \eta\}} f(x) d x+\frac{\mu}{2 f(\eta)} \\
& =\frac{1}{f(\eta)} \int_{-\infty}^{\eta} x f(x) d x+\frac{\mu}{2 f(\eta))} \\
& =\frac{1}{2 f(\eta)}\left(\int_{\eta}^{\infty} x f(x) d x-\int_{-\infty}^{\eta} x f(x) d x\right) \\
& =\frac{1}{2 f(\eta)}\left(\int_{\eta}^{\infty}(x-\eta) f(x) d x-\int_{-\infty}^{\eta}(x-\eta) f(x) d x\right) \\
& =\frac{E(|X-\eta|)}{2 f(\eta)}
\end{aligned}
$$

Therefore, the asymptotic bivariate distribution of $(\bar{X}, \tilde{X})^{\prime}$ is

$$
\operatorname{Normal}\left\{(\mu, \eta)^{\prime},\left[\sigma^{2} / n, \gamma / n ; \gamma / n, 1 /\left[n(2 f(\eta))^{2}\right]\right]\right\}
$$

1(b) Observe that

$$
V_{n}=\frac{\eta}{\mu}+\frac{\tilde{X}-\eta}{\mu}-\frac{\eta}{\mu^{2}}(\bar{X}-\mu)+O_{p}(1 / n)
$$

Thus, by the CLT the asymptotic distribution of V_{n} is $N\left(\eta / \mu, \xi_{n}^{2}\right)$, where

$$
\begin{aligned}
\xi_{n}^{2} & =\frac{1}{n \mu^{2}}\left(\frac{1}{4 f^{2}(\eta)}-\frac{\eta E(|X-\eta|)}{\mu f(\eta)}+\frac{\eta^{2} \sigma^{2}}{\mu^{2}}\right) \\
& =\operatorname{Var}\left(\frac{\tilde{X}-\eta}{\mu}-\frac{\eta}{\mu^{2}}(\overline{(X)-m u))+o(1 / n)}\right.
\end{aligned}
$$

Alternatively (and equivalently), we can apply the multivariate delta method, noting that

$$
\frac{\partial(\eta / \mu)}{\partial \mu}=-\frac{\eta}{\mu} ; \frac{\partial(\eta / \mu)}{\partial \eta}=\frac{1}{\mu} .
$$

1(c) We have

$$
\begin{aligned}
\operatorname{Var}\left(T_{n}\right) & =\frac{c^{2} \sigma^{2}}{n}+\frac{2 c(1-c) \gamma}{n}+\frac{(1-c)^{2}}{n[2 f(\eta)]^{2}}+o(1 / n) \\
& =\frac{c^{2} \sigma^{2}+2 c(1-c) \gamma+(1-c)^{2}[2 f(\eta)]^{2}}{n}+o(1 / n) .
\end{aligned}
$$

The dominating term is minimized at

$$
c=c_{0}=\frac{1-4 \gamma f^{2}(\eta)}{4 \sigma^{2} f^{2}(\eta)-8 \gamma f^{2}(\eta)+1}=\frac{1-2 E(|X-\eta|) f(\eta)}{4 \sigma^{2} f^{2}(\eta)-4 E(|X-\eta|) f(\eta)+1}
$$

c_{0} can be estimated with \hat{c}_{0} obtained by estimating σ^{2} with the sample variance, η with the sample median, $E(|X-\eta|)$ with the sample average absolute deviation of the observations from the sample median, and $f(\eta)$ with a nonparametric estimate of the density at η. Then the desired linear combination estimator for μ is $\hat{c}_{0} \bar{X}+\left(1-\hat{c}_{0}\right) \tilde{X}$.

