Solutions to the problems from Sheldon and Ross

10. Let $P(A)$ be the probability that a student wears a ring. Let $P(B)$ be the probability that a student wears a necklace. Then from the information given we have that

$$
\begin{aligned}
P(A) & =0.2 \\
P(B) & =0.3 \\
P\left(\left(A^{c} \cap B^{c}\right)\right) & =0.6 .
\end{aligned}
$$

a) By De Morgan's theorem, $P(A \cup B)=1-P\left((A \cup B)^{c}\right)=1-0.6=0.4$.
b) By the inclusion/exclusion identity for two sets

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) .
$$

Hence

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)=0.2+0.3-0.4=0.1
$$

14. Following the hint given in the book, we let M denote the set of people who are married, W the set of people who are working professionals, and G the set of people who are college graduates. If we choose a random person and ask what the probability that he/she is either married or working or a graduate we are looking to compute $P(M \cup W \cup G)$. By the inclusion/exclusion theorem we have that the probability of this event is given by

$$
\begin{array}{r}
P(M \cup W \cup G)=P(M)+P(W)+P(G)-P(M \cap W)-P(M \cap G)-P(W \cap G) \\
+P(M \cap W \cap G) . \tag{1}
\end{array}
$$

Following the data given,

$$
\begin{array}{r}
P(M)=470 / 1000, P(G)=525 / 1000, P(W)=312 / 1000 \\
P(M \cap G)=147 / 1000, P(M \cap W)=86 / 1000, P(W \cap G)=42 / 1000 \\
P(M \cap W \cap G)=25 .
\end{array}
$$

Using (1), we have
$P(M \cap W \cap G)=0.47+0.525+0.312-0.147-0.086-0.042+0.025=1.057>1$
25. A sum of five has a probability of $P_{5}=1 / 9$ of occurring. A sum of seven has a probability of $P_{7}=1 / 6$ of occurring, so the probability that neither a five or a seven is given by $1-1 / 9-1 / 6=13 / 18$. Following the hint we let E_{n} be the event that a five occurs on the n-th roll and no five or seven occurs on the $(n-1)$ th rolls up to that point. Then

$$
P\left(E_{n}\right)=\left(\frac{13}{18}\right)^{n-1} \frac{1}{9} .
$$

Since we want the probability that a five comes first, this can happen at roll number one $(\mathrm{n}=1)$, at roll number two $(\mathrm{n}=2)$ or any subsequent roll. Thus the probability that a five comes first is given by

$$
\begin{aligned}
\frac{1}{9} \sum_{n=1}^{\infty}\left(\frac{13}{18}\right)^{n-1} & =\sum_{n=0}^{\infty}\left(\frac{13}{18}\right)^{n} \\
& =\frac{1}{9} \frac{1}{1-13 / 18}=2 / 5
\end{aligned}
$$

45. a) If unsuccessful keys are removed as we try them, then the probability that the k-th attempt opens the door can be computed by recognizing that all attempts up to (but not including) the k-th have resulted in failures. Specifically, if we let N be the random variable denoting the attempt that opens the door we see that

$$
\begin{aligned}
P(N=1) & =\frac{1}{n} \\
P(N=2) & =\left(1-\frac{1}{n}\right) \frac{1}{n-1} \\
P(N=3) & =\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n-1}\right) \frac{1}{n-2} \\
& \vdots \\
P(N=k) & =\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n-1}\right) \cdots\left(1-\frac{1}{n-(k-2)}\right) \frac{1}{n-(k-1)}
\end{aligned}
$$

Hence

$$
P(N=k)=\frac{1}{n}
$$

b) If unsuccessful keys are not removed then the probability that the correct key is selected at draw k

$$
P N=k=(1-p)^{k-1} p
$$

Solutions to the theoretical exercises Sheldon and Ross

11. From the inclusion/exclusion identity for two sets we have

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F) .
$$

Since $P(E \cup F) \leq 1$, the above becomes

$$
\begin{array}{ll}
& P(E)+P(F)-P(E \cap F) \leq 1 \\
\Rightarrow \quad & P(E \cap F) \geq P(E)+P(F)-1
\end{array}
$$

which is known as Bonferroni's inequality. Hence

$$
P(E \cap F) \geq 0.9+0.8-1=0.7 .
$$

16. From Bonferronis inequality for two sets $P(E \cap F) \geq P(E)+P(F)-1$, when we apply this identity recursively we see that

$$
\begin{aligned}
P\left(E_{1} \cap E_{2} \cap E_{3} \cap \cdots E_{n}\right) & \geq P\left(E_{1}\right)+P\left(E_{2} \cap E_{3} \cap E_{4} \cdots \cap E_{n}\right)-1 \\
& \geq P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3} \cap E_{4} \cap E_{5} \cdots \cap E_{n}\right)-2 \\
& \geq \cdots \\
& \geq P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots+P\left(E_{n}\right)-(n-1) .
\end{aligned}
$$

That the final term is $\mathrm{n}-1$ can be verified to be correct by evaluating this expression for $\mathrm{n}=2$ which yields the original Bonferroni inequality.

Solution to the "Socks in the drawer" problem

a) Total number of ways to choose is $\binom{2 n}{2}=n(2 n-1)$. For each color, there are $\binom{n}{2}$ pairs of the color. The total number of matching pairs is $2\binom{n}{2}=n^{2}-n$. Hence the probability of choosing a matching pair of socks from a drawer with n white and n black socks is given by

$$
\frac{n^{2}-n}{n(2 n-1)}
$$

b) $\frac{n(n-1}{n(2 n-1)}=\frac{(n-1)}{(2 n-1)} \rightarrow 1 / 2$ as $n \rightarrow \infty$.

Solution to the "Boole's Inequality"

Observe that

$$
\begin{aligned}
& P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{2} \cap A_{2}\right) \\
\Rightarrow & P\left(A_{1} \cup A_{2}\right) \leq P\left(A_{1}\right)+P\left(A_{2}\right)
\end{aligned}
$$

When we apply this inequality recursively we see that

$$
\begin{aligned}
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots A_{n}\right) & \leq P\left(A_{1}\right)+P\left(A_{2} \cup A_{3} \cup \cdots A_{n}\right) \\
& \leq P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3} \cup A_{4} \cup A_{5} \cdots \cup A_{n}\right) \\
& \leq \cdots \\
& \leq P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right) .
\end{aligned}
$$

