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1. To understand the e↵ect of a potential carcinogen, a study was undertaken where n = 23 rats were
treated with the potential carcinogen, and the time to tumor occurrence (in months) was recorded. Of
particular biological relevance was whether a tumor developed within 6 months, and hence the data was
collected over a period of 6 months. Let z

i

denote the time to tumor development (in months) for the ith
rat, with z

i

2 {1, . . . , k + 1} and k = 6. For all the rats which didn’t develop a tumor within the first 6
months, we set z

i

= 7.
The simplest version of a continuation ratio model for the time to tumor occurrence can be expressed as

pr(z
i

= j) = p(1� p)j�1
, j = 1, . . . , k,

independently for i = 1, . . . , n. The parameter p is commonly referred to as the discrete hazards, with the
interpretation that p = pr(z

i

= j | z
i

� j), that is, p is the probability of the occurrence of the tumor during
month j given that it has not occurred within the first (j � 1) months.

(a) Assuming a Beta(1/2, 1/2) prior on p, calculate the posterior distribution of p.

(b) Out of the 23 rats in the study, 11 developed tumor within the first month, 5 during the second month,
2 during the third month, 2 during the fourth month, 1 during the fifth month and 1 during the sixth month.
One rat did not develop tumor within the first 6 months. Use this information to calculate the posterior
mean of p under the Beta(1/2, 1/2) prior.

Solution. First, pr(z
i

= k+1) = 1�
P

k

j=1 p(1� p)j�1 = 1� {1� (1� p)k} = (1� p)k. The joint likelihood
given p is

L(z | p) =
nY

i=1

k+1Y

j=1

⇡

(zi=j)
j

,

where ⇡

j

= pr(z
i

= j | p) and z = (z1, . . . , zn). Let n

j

=
P

n

i=1 (z
i

= j). Substituting the expression for
⇡

k+1, we have

L(z | p) =


nY

i=1

kY

j=1

{p(1� p)j�1} (zi=j)

�
⇥


nY

i=1

{(1� p)k} (zi=k+1)

�

= p

Pn
i=1

Pk
j=1 (zi=j) (1� p)

Pn
i=1

Pk+1
j=1 (j�1) (zi=j)

= p

Pk
j=1 nj (1� p)

Pk+1
j=2 (j�1)nj

.

Hence, the posterior of p is Beta

✓P
k

j=1 nj

+ 0.5,
P

k+1
j=2(j � 1)n

j

+ 0.5

◆
.

For part (b), use n1 = 11, n2 = 5, n3 = n4 = 2, n5 = n6 = n7 = 1 to get a =
P

k

j=1 nj

+ 0.5 = 22.50 and

b =
P

k+1
j=2(j � 1)n

j

+ 0.5 = 30.50, so that E(p | z) = a/(a+ b) = 0.4245.
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2. Let f and g be two probability density functions on R with f(✓)/g(✓) 6= 0 for all ✓ 2 R. The Kullback–
Leibler (KL) divergence between f and g, denoted KL(f ||g), is defined as

KL(f ||g) =
Z

✓2R
f(✓) log


f(✓)

g(✓)

�
d✓.

Like the total variation distance, KL(f ||g) is a “measure of distance” between densities f and g, though KL
is not a distance metric. If f and g respectively have N(µ1, ⌧

2
1 ) and N(µ2, ⌧

2
2 ) distributions, we often write

KL
⇥
N(µ1, ⌧

2
1 ) || N(µ2, ⌧

2
2 )
⇤
instead of KL(f ||g).

Suppose x | ✓ ⇠ N(✓, 1/n) and ✓ is assigned a N(0, 1) prior. Let ✓
n

and �

2
n

respectively denote the posterior
mean and variance of ✓, so that the posterior distribution of ✓ | x is a N(✓

n

,�

2
n

) distribution.

Suppose the true data generating parameter is ✓0; let E0 denote an expectation under a N(✓0, 1/n) distri-
bution. Let

T

n

= KL
⇥
N(✓

n

,�

2
n

) || N(x, 1/n)
⇤
.

Find T

n

. Does E0Tn

! 0 as n ! 1? Interpret the result.

Hint: Work out KL
⇥
N(µ1, ⌧

2
1 ) || N(µ2, ⌧

2
2 )
⇤
first.

Solution: First let us find
⇥
N(µ1, ⌧

2
1 ) || N(µ2, ⌧

2
2 )
⇤
. We have

f(✓)

g(✓)
=

s
⌧

2
2

⌧

2
1

exp


� 1

2

⇢
(✓ � µ1)2

⌧

2
1

� (✓ � µ2)2

⌧

2
2

��
.

Thus,

log
f(✓)

g(✓)
=

1

2
log

⌧

2
2

⌧

2
1

� 1

2


(✓ � µ1)2

⌧

2
1

� (✓ � µ2)2

⌧

2
2

�
.

Hence,

KL(f ||g) = E
f

log
f

g

=
1

2
log

⌧

2
2

⌧

2
1

� 1

2


1� ⌧

2
1 + (µ1 � µ2)2

⌧

2
2

�

=
1

2
log

⌧

2
2

⌧

2
1

+
1

2


⌧

2
1

⌧

2
2

� 1

�
+

1

2

(µ1 � µ2)2

⌧

2
2

.

Returning to our case, we have ✓

n

= nx/(n+ 1) and �

2
n

= 1/(n+ 1). Using the above formula, we have

T

n

=
1

2


log(1 + 1/n)� 1

n+ 1
+

nx

2

(n+ 1)2

�
.

Thus,

lim
n!1

E0Tn

= lim
n!1

1

2


log(1 + 1/n)� 1

n+ 1
+

n(✓20 + 1/n)

(n+ 1)2

�
= 0,

since lim
x!0 log(1 + x) = 0.
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3. A coin with probability p of turning heads is independently flipped 10 times. Assume a U(0, 1) prior
on p. We are told that 7 out of the 10 flips landed in tails. The results for the remaining three flips are
not disclosed. Based on this data, calculate the posterior distribution and the posterior mean of p; can you
identify what distribution the posterior is?

Solution: Let x denote the number of heads out of the n = 10 flips, so that x | p ⇠ Binomial(n, p). We are
given that x  3, and we have to find the posterior distribution of p | x  3. Since ⇡(p) / 1, we have

⇡(p | x  3) / P (x  3 | p) =
3X

j=0

✓
n

j

◆
p

j(1� p)n�j

=
3X

j=0

✓
n

j

◆
Beta(j + 1, n� j + 1)⇡

j

(p)

=
3X

j=0

w

j

⇡

j

(p),

where

w

j

=

✓
n

j

◆
Beta(j + 1, n� j + 1) =

n!

j!(n� j)!

�(j + 1)�(n� j + 1)

�(n+ 2)
=

1

n+ 1
.

and

⇡

j

(p) =
p

j(1� p)n�j

Beta(j + 1, n� j + 1)
, p 2 (0, 1),

is the density of a beta(j + 1, n � j + 1) distribution. Thus, the posterior distribution of p is a mixture of
⇡

j

, j = 0, 1, 2, 3. Further, since the w

j

s do not depend on j, all the mixture weights are equal. Thus,

⇡(p | x  3) =
1

4
⇡0(p) +

1

4
⇡1(p) +

1

4
⇡2(p) +

1

4
⇡3(p) =

3X

j=0

1

4
⇡

j

(p).

The posterior mean
Z

p ⇡(p | x  3)dp =
3X

j=0

1

4

j + 1

n+ 2
=

5

24
.


