October 9, 2014

Problem I

- 1. Sample observations y_1, \ldots, y_{100} and x_1, \ldots, x_{100} from $y_i \mid x_i = f(x_i) + \epsilon_i, \epsilon_i \sim N(0, 0.5), x_i \sim U(0, 1), f \sim GP(0, c), c(x, x') = e^{-(x-x')^2}.$
- 2. Fit the model (based on the first 50 observations (training data)) $y_i = f(x_i) + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$ $f \sim GP(0, c), c = e^{-\kappa (x x')^2}, \sigma^2 \sim IG(a, b)$ and an appropriate discrete uniform prior on κ
- 3. Plot the posterior predictive mean and the 95 % point-wise credible intervals for the next 50 observations (test data) and estimate the coverage probability.
- 4. Assess sensitivity on the mean squared prediction error and the coverage probability with respect to the hyperparameters for the priors for σ^2 and κ .