Hw4 for 6448 (due April 20) (Debdeep Pati)

1. Consider the linear regression model $Y = X\beta + \epsilon$ where $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^{p}$, $\epsilon \sim \mathcal{N}(0, I_{n})$. Consider a spike and slab prior on β

$$\pi(\beta) = \prod_{j=1}^{p} \{\delta_0(\beta_j) p_{0j} + (1 - p_{0j}) N(\beta_j; 0, c_j^2)\}$$

where p_{0j} is the prior probability of excluding the *j*-th predictor by setting its coefficient to 0. Show that the conditional posterior of β_j , for j = 1, ..., p, is given by

$$\pi(\beta_j \mid \beta_{-j}, Y, X) = \hat{p}_j \delta_0(\beta_j) + (1 - \hat{p}_j) \mathcal{N}(\beta_j; E_j, V_j)$$

where $V_j = (c_j^{-2} + X'_j X_j)^{-1}$, $E_j = V_j X'_j (Y - X_{-j}\beta_{-j})$, $X_j = j$ th column of $X, X_{-j} = X$ with j th column excluded, $\beta_{-j} = \beta$ with j th element excluded, and

$$\hat{p}_j = \frac{p_{0j}}{p_{0j} + (1 - p_{0j})\frac{N0;0,c_j^2)}{N(0;E_j,V_j)}}$$

is the conditional probability of $\beta_j = 0$. Here $N(x; \mu, \sigma^2)$ denotes the normal density with mean μ , variance σ^2 evaluated at x.

2. Generate observations from the previous model with n = 100, p = 200, and elements of X i.i.d from Unif(0, 1), first 5 coefficients of β are set to 10 and the remaining entries are all 0. Run the MCMC for 5,000 iterations using the spike and slab prior with $c_j = 4$ and $p_{0j} = 0.975$. Compare the results with Horseshoe (code provided on the course webpage). Perform variable selection in both the cases using HPPM, marginal and median probability models. Compare the results.