## Hw4 for 6448 (due April 20) (Debdeep Pati)

1. Consider the linear regression model $Y=X \beta+\epsilon$ where $X \in \mathbb{R}^{n \times p}, \beta \in \mathbb{R}^{p}, \epsilon \sim \mathrm{~N}\left(0, I_{n}\right)$. Consider a spike and slab prior on $\beta$

$$
\pi(\beta)=\prod_{j=1}^{p}\left\{\delta_{0}\left(\beta_{j}\right) p_{0 j}+\left(1-p_{0 j}\right) N\left(\beta_{j} ; 0, c_{j}^{2}\right)\right\}
$$

where $p_{0 j}$ is the prior probability of excluding the $j$-th predictor by setting its coefficient to 0 . Show that the conditional posterior of $\beta_{j}$, for $j=1, \ldots, p$, is given by

$$
\pi\left(\beta_{j} \mid \beta_{-j}, Y, X\right)=\hat{p}_{j} \delta_{0}\left(\beta_{j}\right)+\left(1-\hat{p}_{j}\right) \mathrm{N}\left(\beta_{j} ; E_{j}, V_{j}\right)
$$

where $V_{j}=\left(c_{j}^{-2}+X_{j}^{\prime} X_{j}\right)^{-1}, E_{j}=V_{j} X_{j}^{\prime}\left(Y-X_{-j} \beta_{-j}\right), X_{j}=j$ th column of $X, X_{-j}=X$ with $j$ th column excluded, $\beta_{-j}=\beta$ with $j$ th element excluded, and

$$
\hat{p}_{j}=\frac{p_{0 j}}{p_{0 j}+\left(1-p_{0 j}\right) \frac{\left.N 0 ; 0, c_{j}^{2}\right)}{N\left(0 ; E_{j}, V_{j}\right)}}
$$

is the conditional probability of $\beta_{j}=0$. Here $N\left(x ; \mu, \sigma^{2}\right)$ denotes the normal density with mean $\mu$, variance $\sigma^{2}$ evaluated at $x$.
2. Generate observations from the previous model with $n=100, p=200$, and elements of $X$ i.i.d from $\operatorname{Unif}(0,1)$, first 5 coefficients of $\beta$ are set to 10 and the remaining entries are all 0 . Run the MCMC for 5,000 iterations using the spike and slab prior with $c_{j}=4$ and $p_{0 j}=0.975$. Compare the results with Horseshoe (code provided on the course webpage). Perform variable selection in both the cases using HPPM, marginal and median probability models. Compare the results.

