Hw4 for 6448 (due March 31) (Debdeep Pati)

1. Consider the binary regression model $P\left(y_{i}=1 \mid x_{i}, \beta\right)=\Phi\left(x_{i}^{\prime} \beta\right), i=1, \ldots, n$ where y_{i} 's are binary random variables, x_{i} 's are p-dimensional covariates and β is a p-dimensional coefficient vector. Introduce the auxiliary variable $z_{i} \sim \mathrm{~N}\left(x_{i}^{\prime} \beta, 1\right)$ and set $y_{i}=I\left(z_{i}>0\right)$. Assume $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$, $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)^{\prime}, X$ is the $n \times p$ covariate matrix. Consider a point mass prior on β

$$
\pi(\beta)=\prod_{j=1}^{p}\left\{\delta_{0}\left(\beta_{j}\right) p_{0 j}+\left(1-p_{0 j}\right) N\left(\beta_{j} ; 0, c_{j}^{2}\right)\right\}
$$

where $p_{0 j}$ is the prior probability of excluding the j-th predictor by setting its coefficient to 0 . Show that the conditional posterior of β_{j}, for $j=1, \ldots, p$, is given by

$$
\pi\left(\beta_{j} \mid \beta_{-j}, \mathbf{z}, \mathbf{y}, X\right)=\hat{p}_{j} \delta_{0}\left(\beta_{j}\right)+\left(1-\hat{p}_{j}\right) \mathrm{N}\left(\beta_{j} ; E_{j}, V_{j}\right)
$$

where $V_{j}=\left(c_{j}^{-2}+X_{j}^{\prime} X_{j}\right)^{-1}, E_{j}=V_{j} X_{j}^{\prime}\left(\mathbf{z}-X_{-j} \beta_{-j}\right), X_{j}=j$ th column of $X, X_{-j}=X$ with j th column excluded, $\beta_{-j}=\beta$ with j th element excluded, and

$$
\hat{p}_{j}=\frac{p_{0 j}}{p_{0 j}+\left(1-p_{0 j}\right) \frac{\left.N 0 ; 0, c_{j}^{2}\right)}{N\left(0 ; E_{j}, V_{j}\right)}}
$$

is the conditional probability of $\beta_{j}=0$. Here $N\left(x ; \mu, \sigma^{2}\right)$ denotes the normal density with mean μ, variance σ^{2} evaluated at x.
2. Compute the expected number of clusters induced by a Dirichlet Process on the observations (X_{1}, \ldots, X_{n}) under the following hierarchical distribution: $X_{i} \mid P \sim P, P \sim D P\left(\alpha G_{0}\right)$ and show that it is asymptotically of the order $\alpha \log n$ as $n \rightarrow \infty$.
3. (a) Simulate data from the following mixture of normals as $y_{i} \sim 0.1 N(-1,0.2)+0.5 N(0,1)+$ $0.4 N(1,0.4), i=1, \ldots, 100$
(b) Obtain a frequentist estimate of the density \& plot vs true density
(c) Run the finite mixture model Gibbs sampler for $k=10, a_{h}=\alpha / k, \mu_{0}=0, \kappa=\alpha_{\tau}=b_{\tau}=\alpha=1$.
(d) Run the blocked Gibbs sampler for $N=10 \&$ the same hyperparameter specification.
(e) Compare the resulting density estimates.

