Solutions of problems from Sheldon Ross book (8th Edition) Chapter 5

5.6. a) Apply integration by parts twice to obtain,

$$
E[X]=\frac{1}{4} \int_{0}^{\infty} x^{2} e^{-x / 2} d x=4
$$

b) By symmetry of $f(x)$ about $x=0, E[X]=0$.
c) $E[X]=\int_{5}^{\infty} \frac{5}{x} d x=\infty$
5.7. $\int_{0}^{1}\left(a+b x^{2}\right) d x=1$ or, $a+b / 3=1 . \int_{0}^{1} x\left(a+b x^{2}\right) d x=1$ or, $a / 2+b / 4=3 / 5$. Solving for a and b, we get $a=3 / 5$ and $b=6 / 5$.
5.9. If s units are stocked and the demand is X , then the profit, $P(s)$, is given by

$$
P(s)=\left\{\begin{array}{l}
b X-(s-X) \text { if } X \leq s \\
\text { bsif } X>s
\end{array}\right.
$$

Hence

$$
\begin{aligned}
E(P(s)) & =\int_{0}^{s}(b x-(s-x)) f(x) d x+\int_{s}^{\infty} s b f(x) d x \\
& =(b+l) \int_{0}^{s} x f(x) d x-s l \int_{0}^{s} f(x) d x+s b\left\{1-\int_{0}^{s} f(x) d x\right\} \\
& =s b+(b+l) \int_{0}^{s}(x-s) f(x) d x
\end{aligned}
$$

Differentiation yields using the Leibnitz rule

$$
\begin{aligned}
\frac{d}{d s} E(P(s)) & =b+(b+l) \frac{d}{d s}\left\{\int_{0}^{s} x f(x) d x-s \int_{0}^{s} f(x) d x\right\} \\
& =b-(b+l) \int_{0}^{s} f(x) d x
\end{aligned}
$$

Equating to zero shows that the maximal expected profit is obtained when s is chosen so that

$$
F(s)=\frac{b}{b+l}
$$

5.11. Let U denote the random point picked up from the interval $[0, L]$. Then $U \sim$ $\operatorname{Unif}([0, L])$. The density of U is given by

$$
f_{U}(x)=\left\{\begin{array}{l}
1 / L \text { if } x \in[0, L] \\
0, o / w
\end{array}\right.
$$

Define X to be another random variable denoting the ratio of the shorter interval to the longer interval. Then

$$
X=\left\{\begin{array}{l}
\frac{U}{L-U}, \text { if } U<0.5 L \\
\frac{L-U}{U}, \text { if } U \geq 0.5 L
\end{array}\right.
$$

We need to find $P(X<0.25)$. Note that

$$
\begin{aligned}
P(X<0.25) & =P(\{X<0.25\} \cap\{U<0.5 L\})+P(\{X<0.25\} \cap\{U \geq 0.5 L\}) \\
& =P\left(\left\{\frac{U}{L-U}<0.25\right\} \cap\{U<0.5 L\}\right)+P\left(\left\{\frac{L-U}{U}<0.25\right\} \cap\{U \geq 0.5 L\}\right) \\
& =P(U<L / 5)+P(\{U>4 L / 5\} \cap\{U \geq 0.5 L\}) \\
& =P(U<L / 5\})+P(\{U \geq 4 L / 5\}) \\
& =2 / 5
\end{aligned}
$$

5.12. Let X denote the location of the breakdown which is uniformly distributed in $(0,100)$. In the first case, the towing distance will be

$$
Y=\left\{\begin{array}{l}
X, X \leq 25 \\
50-X, X \in(25,50] \\
X-50, X \in(50,75] \\
100-X, X \in(75,100]
\end{array}\right.
$$

and in the second scenario the towing distance will be

$$
Z=\left\{\begin{array}{l}
25-X, X \leq 25 \\
X-25, X \in(25,37.5] \\
50-X, X \in(37.5,50] \\
X-50, X \in(50,62.5] \\
75-X, X \in(62.5,75] \\
X-75, X \in(75,100)
\end{array}\right.
$$

$E(Y)=12.5$ in the first cases whereas $E(Z)=9.375$ in the second case and hence the second case will be more efficient.

Theoretical Exercises

5.2.

$$
\int_{0}^{\infty} P(Y<-y) d y=\int_{0}^{\infty} \int_{-\infty}^{-y} f_{Y}(x) d x d y=\int_{-\infty}^{0} \int_{0}^{-x} f_{Y}(x) d y d x=-\int_{-\infty}^{0} x f_{Y}(x) d x
$$

Similarly,

$$
\int_{0}^{\infty} P(Y>y) d y=\int_{0}^{\infty} x f_{Y}(x) d x
$$

5.7. $S . D(a X+b)=\operatorname{Var}(a X+b)=\sqrt{a^{2} \sigma^{2}}=|a| \sigma$

