Homework 8 Solutions
 Problems

5.21

$$
\begin{aligned}
P\{X>74\} & =P\left(\frac{X-71}{\sqrt{6.25}}>\frac{74-71}{\sqrt{6.25}}\right) \\
& =P(Z>1.2) \\
& =\phi(-1.2) \\
& =1-0.8849 \\
& =0.1151
\end{aligned}
$$

$$
\begin{aligned}
P\{X>77 \mid X>72\} & =\frac{P(X>77, X>72)}{P(X>72)} \\
& =\frac{P(X>77)}{P(X>72)} \\
& =\frac{P(Z>2.4)}{P(Z>0.4)} \\
& =\frac{1-0.9918}{1-0.6554} \\
& =\frac{0.0082}{0.3446} \\
& =0.2380
\end{aligned}
$$

A. $P\{.9000-.005<X<.9000+.005\}$

$$
\begin{aligned}
& =P\left\{-\frac{.005}{.003}<Z<\frac{.005}{.003}\right\} \\
& =P\{-1.67<Z<1.67\} \\
& =2 * \Phi(1.67)-1 \\
& =.9050 .
\end{aligned}
$$

Hence 9.5 percent will be defective (that is each will be defective with probability $1-.9050=.0950$).
B. $P\left\{-\frac{0.005}{\sigma}<Z<\frac{0.005}{\sigma}\right\}=2 * \phi\left(\frac{0.005}{\sigma}\right)-1$

$$
=0.99
$$

when $\phi\left(\frac{0.005}{\sigma}\right)=0.995 \rightarrow \frac{0.005}{\sigma}=2.575 \rightarrow \sigma=0.0019$
5.24

With C denoting the life of a chip, and Φ the standard normal distribution function we have

$$
\begin{aligned}
P\left\{C<1.8 \times 10^{6}\right\} & =\Phi\left(\frac{1.8 \times 10^{6}-1.4 \times 10^{6}}{3 \times 10^{5}}\right) \\
& =\Phi(1.33) \\
& =0.9082
\end{aligned}
$$

Thus, if N is the number of the chips whose life is less than 1.8×10^{6}, then N is a binomial random variable with parameters (100, .9082). Hence,

$$
P\{N>19.5\} \approx 1-\Phi\left(\frac{19.5-90.82}{90.82(.0918)}\right)=1-\Phi(-24.7) \approx 1
$$

Let X denote the number of unacceptable items among the next 150 produced. Since X is a binomial random variable with mean $150(.05)=7.5$ and variance $150(.05)(.95)=7.125$, we obtain that, for a standard normal random variable Z.

$$
P\{X \leq 10\}=P\{X \leq 10.5\}
$$

$$
\begin{aligned}
& =P\left(\frac{X-7.5}{\sqrt{7.125}} \leq \frac{10.5-7.5}{\sqrt{7.125}}\right) \\
& =P(Z \leq 1.1239) \\
& =0.8695
\end{aligned}
$$

The exact result can be obtained by using the text diskette, and (to four decimal places) is equal to .8678 .
5.32
A. $P\{X>2\}=\mathrm{e}^{-1}$
B. $P\{X \geq 10 \mid X>9)=\mathrm{e}^{-1 / 2}$
5.33
$P\{X>8\}=\mathrm{e}^{-1}$
5.37
A. $\quad P\left\{|X|>\frac{1}{2}\right\}=P\left\{X>\frac{1}{2}\right\}+P\left\{X<-\frac{1}{2}\right\}=\frac{1}{2}$
B. $\quad P\{|X| \leq a\}=P\{-a \leq X \leq a\}=a, 0<a<1$

Therefore,

$$
f_{|X|}(a)=1,0<a<1 .
$$

That is, $|X|$ is uniform on $(0,1)$.

Chapter 5
5.39

$$
\begin{aligned}
F_{Y}(y) & =P\{\log (X) \leq y\} \\
& =P\left\{X \leq e^{y}\right\} \\
& =F_{X}\left(e^{y}\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(e^{y}\right) * e^{y} \\
& =e^{y} e^{-e^{y}}
\end{aligned}
$$

5.40

$$
F_{Y}(y)=P\left\{e^{X} \leq y\right\}=F_{X}(\log y)
$$

Then,
$f_{Y}(y)=f_{X}(\log y) * \frac{1}{y}=\frac{1}{y}, 1<\mathrm{y}<\mathrm{e}$

Theoretical Exercises

5.9

The final step of parts (a) and (b) use that $-Z$ is also a standard normal random variable.
A. $P\{Z>x\}=P\{-Z<-x\}=P\{Z<-x\}$
B. $P\{|Z|>x\}=P\{Z>x\}+P\{Z<-x\}$
$=P\{Z>x\}+P\{-Z>x\}$
$=2 * P\{Z>x\}$
C. $P\{|Z|<x\}=1-P\{|Z|>x\}$

$$
\begin{aligned}
& =1-2 * P\{Z>x\} \\
& =1-2(1-P\{Z<x\}) \\
& =1-2+2 P\{Z<x\} \\
& =2 P\{Z<x\}-1
\end{aligned}
$$

(by B)

