6.24 (a) $P(N=n)=p_{0}^{n-1}\left(1-p_{0}\right)$
(b) $P(X=j)=\sum_{n=1}^{\infty} P(N=n, X=j)=\sum_{n=1}^{\infty} p_{0}^{n-1} p_{j}=\frac{p_{j}}{\left(1-p_{0}\right)}$
(c) $P(N=n, X=j)=p_{0}^{n-1} p_{j}=P(N=n) P(X=j)$
(d) and (e) It might seem intuitively that X is independent of N, but N is not independent of X (since you may think that the occurrence of X influences on the occurrence of N. But this is not true as it follows from (c) that X and N are independent.

1. Let X and Y denotes the number of males and females that enter the post office. Then

$$
\begin{aligned}
P(X=i, Y=j)= & P(X=i, Y=j \mid X+Y=i+j) P(X+Y=i+j)+ \\
& P(X=i, Y=j \mid X+Y \neq i+j) P(X+Y \neq i+j) \\
= & P(X=i, Y=j \mid X+Y=i+j) P(X+Y=i+j)
\end{aligned}
$$

Since $(X+Y) \sim \operatorname{Poiss}(\lambda), P(X+Y=i+j)=\exp \{-\lambda\} \lambda^{i+j} /(i+j)!$ and

$$
P(X=i, Y=j \mid X+Y=i+j)=\binom{i+j}{i} p^{i}(1-p)^{j}
$$

Hence

$$
\begin{aligned}
P(X=i, Y=j)=\binom{i+j}{i} & p^{i}(1-p)^{j} \exp \{-\lambda\} \lambda^{i+j} /(i+j)! \\
& =e^{-\lambda p} \frac{(\lambda p)^{i}}{i!} e^{-\lambda(1-p)} \frac{(\lambda(1-p))^{j}}{j!}
\end{aligned}
$$

Since the joint density of X and Y factors into 2 parts involving i and j separately, we have X and Y independent with $X \sim \operatorname{Poisson}(\lambda p)$ and $Y \sim \operatorname{Poisson}(\lambda(1-p))$
6. (. (a) $P\{x=1, Y=2\}=P($ Pie $=1$, Die $=1)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}$

$$
\begin{aligned}
& P\left\{x=2,\{=3\}=P\{\text { Die } 1=1 \text {, Die } 2=2\}+P\{\text { Die } 1=2 \text {, Die } 2=1\}=\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}=\sqrt{36}\right. \\
& P\{X=2, Y=4\}=P\left\{D_{1}=2, D_{2}=2\right\}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \\
& P\{X=3, Y=4\}=P\left\{D 1=3, D_{2}=1\right\}+P\left\{D 1=1, D_{2}=3\right\}=2 \\
& P\{x=3, Y=5\}=\frac{2}{36} \\
& \mathrm{P}_{1} \mathrm{D}_{2} \\
& \begin{array}{ll}
3 & 2 \\
2 & 3
\end{array} \\
& P\{X=3, Y=6\}=\frac{1}{36} \\
& 33 \\
& P\{x=4, Y=5\}=\frac{2}{36} \\
& \begin{array}{cc}
R_{1} & D_{2} \\
4 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 42 \\
& 24 \\
& P\{x=4, Y=7\}=\frac{2}{36} \\
& \begin{array}{ll}
\mathrm{D}_{1} 1 / 2 \\
43
\end{array} \\
& 34 \\
& P\left\{x=4,\{=8\}=\frac{1}{36}\right. \\
& D_{1} D_{2} \\
& 44 \\
& P\{X=5, Y=6\}=\left[\begin{array}{lll}
2 & 26 & D_{1} \\
5 & D_{2} \\
5 & 1 \\
1 & 5
\end{array}\right. \\
& P\{x=5, Y=7\}=\frac{2}{36} \\
& P\{x=5, Y=8\}=P\{x=5, T=9\}=\frac{2}{36} \\
& P\{X=5, Y=10\}=\frac{1}{36}
\end{aligned}
$$

$$
\begin{aligned}
& P\{x=6,4=12\}=\sqrt{\frac{1}{36}}
\end{aligned}
$$

(b). $P(x=1, Y=1)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \quad \begin{array}{lll} & D_{1} & 1 \\ D_{2} & 1\end{array}$

$$
P\{X=1, Y=2\}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \quad \begin{array}{ll}
D_{1} & 1 \\
D_{2} & 2
\end{array}
$$

Similarly,

$$
P\{X=i, \quad Y=j\}=\frac{1}{6} \cdot \frac{1}{6}, \quad \begin{aligned}
& D_{1} i \\
& D_{2} j
\end{aligned}
$$

In conclusion,

$$
\begin{aligned}
& P\{X=i, Y=j\}=\frac{1}{6} \cdot \frac{1}{6}=\sqrt{\frac{1}{36}}, \underbrace{i=1,2, \cdots, 6, j=1,2, \cdots, 6}_{\text {Don't forget to write the domain. }} \\
& P\{X=1, Y=1\}=1,1,1 \quad D . \quad 1
\end{aligned}
$$

(C)

$$
\begin{aligned}
& P\{X=1, Y=1]=\frac{1}{6} \cdot \frac{1}{6}=\sqrt{\frac{1}{36}} \quad \begin{array}{l}
P_{1} \cdot 1 \\
D_{2}
\end{array} \\
& P\{X=1, Y=2\}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \quad \begin{array}{l}
P_{1}, \\
D_{2}, 1
\end{array} \\
& P\{X=1, Y=3\}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \begin{array}{l}
D_{1} 1 \\
D_{2} 3
\end{array}
\end{aligned}
$$

similarly

$$
\begin{aligned}
& P\{X=i, Y=j\}=\frac{1}{6} \cdot \frac{1}{6} \cdot D_{1} i \\
& P\{X=i, Y=j\}=\frac{1}{6} \cdot \frac{1}{6}=\left|\frac{1}{36}\right|, i=1,2, \cdots, 6, j=1,2, \cdots, 6
\end{aligned}
$$

6.2 (a) zoch batt has $\frac{1}{5+8}-\frac{1}{13}$ prabalility to te seterted.

$$
\begin{aligned}
& P\left(x_{1}=0, x_{2}=0\right)=\frac{8}{13} \cdot \frac{8-1}{13-1}=\frac{8}{13} \cdot \frac{7}{12}=\frac{14}{39}=0.36 \\
& P\left(x_{1}=0, x_{2}=1\right)=\frac{8}{13} \cdot \frac{5}{13-1}=\frac{8}{13} \cdot \frac{5}{12}=\frac{10}{39}=0.26 \\
& P\left(x_{1}=1, x_{2}=0\right)=\frac{5}{13} \cdot \frac{8}{13-1}=\frac{5}{13} \cdot \frac{8}{12}=\frac{10}{39}=0.26 \\
& P\left(x_{1}=1, x_{2}=1\right)=\frac{5}{13} \cdot \frac{5-1}{13-1}=\frac{5}{39}=0.13
\end{aligned}
$$

(b)

6.3

$6.3(b)$

6.7. $P\left\{x_{1}, x_{2}\right\}=P\left\{x_{1}=x_{1}, x_{2}=x_{2}\right\}$

$$
\begin{aligned}
& =\binom{n}{x_{1}} \cdot p^{n-x_{1}} \cdot(1-p)^{x_{1}} \cdot\binom{m}{x_{2}} p^{m-x_{2}} \cdot(1-p)^{x_{2}} \\
& =\binom{x_{1}+1}{x_{1}} p(1-p)^{x_{1}}\binom{x_{2}+1}{x_{2}} p(1-p)^{x_{2}} \\
& =\left(x_{1}+1\right) p(1-p)^{x_{1}}\left(x_{2}+1\right) p(1-p)^{x_{2}} \\
& =\left(x_{1}+1\right)\left(x_{2}+1\right) p^{2}(1-p) x_{1}+x_{2}
\end{aligned}
$$

