
Miscellaneous Errors in the Chapter 6 Solutions

3.30(b) In this problem, early printings of the second edition use the beta(a, b)
distribution, but later versions use the Poisson(λ) distribution. If your
book uses beta(a, b), replace it by Poisson(λ). (In fact, you cannot
use Theorem 3.4.2 to calculate the mean and variance of a beta(a, b)
random variable.)

6.2 There is a minor error in the solution: einθ should instead be en(n+1)θ/2.

6.11(b) For dealing with the shifted exponential distribution in 6.9(b), there
are two different approaches. One way to solve the problem is to show
that X(1) is complete and sufficient, and then use Basu’s lemma to
prove the desired independence. Since this family of distributions is
not an exponential family, we have to show completeness directly from
the definition. We can use an argument similar to that in the text
for showing X(1) is complete and sufficient when sampling from the
Uniform(0,θ) distribution.

The solution in the manual gives a second approach. It uses the for-
mula for the joint pdf of the order statistics given on page 234 of
text. You make a multivariate transformation from (x(1), . . . , x(n)) to
(x(1), y1, . . . , yn−1) (this transformation has Jacobian = 1) and then
show that the resulting joint density factors, thus proving the indepen-
dence.

6.17 A comment: The phrases “T = T (X) is a complete statistic” and “the
family of distributions of T forms a complete family” mean the same
thing.

6.20(d) In spite of what the manual says, the family of distributions in part
(d) is a one-parameter exponential family since the exponent may be
factored as −e−(x−θ) = −eθe−x = w(θ)t(x). Thus, the usual argument
says that a complete sufficient statistic is T (X) =

∑n
i=1 e−Xi .

6.21(a) There is a typo in the solution. It should read: If g(−1) = −g(1)
and g(0) = 0, then Eg(X) = 0 for all θ, . . . , There is a missing minus
sign.
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More Solutions

3.30(b) For the Poisson(λ) distribution, the identities become

E

[(
∂

∂λ
log λ

)
X

]
= − ∂

∂λ
log e−λ

Var

[(
∂

∂λ
log λ

)
X

]
= − ∂2

∂λ2
log e−λ − E

[(
∂2

∂λ2
log λ

)
X

]

which simplify to

E
[
1

λ
X
]

= 1 =⇒ EX = λ

Var
[
1

λ
X
]

= 0 + E
(

1

λ2
X
)

=⇒ Var(X) = EX = λ .

3.32(a)
Notation: In the special case wi(θ) = θi for all i, (3.4.1) becomes

f(x|θ) = c(θ)h(x) exp

(
k∑

i=1

θiti(x)

)

which is (3.4.7) with η replaced by θ. (For convenience and because I hate
η, we will replace η by θ throughout this problem.)

There are two ways to prove the identities given in part (a).
Method one: Just show that the identities in Theorem 3.4.2 simplify to

those in part (a) in the special case given above where wi(θ) = θi for all i. In

this case
∂wi(θ)

∂θj

= 1 if i = j, and 0 otherwise, and
∂2wi(θ)

∂θ2
j

= 0 for all i and

j. Substituting these in Theorem 3.4.2 immediately leads to the formulas in
part (a).

Method two: Derive the identities in (a) directly. This approach is
more instructive. The proof in this special case is much less messy than the
general case proved in problem 3.31.

Assume f(x|θ) is a pdf. (A similar argument applies if it is a pmf.)
Differentiating both sides of

1 =
∫ ∞
−∞

c(θ)h(x) exp

(
k∑

i=1

θiti(x)

)
dx
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with respect to θj, taking the derivative inside the integral and using the
product rule leads to

0 =
∫ ∞
−∞

∂

∂θj

{
c(θ)h(x) exp

(
k∑

i=1

θiti(x)

)}
dx

=
∫ ∞
−∞

{
∂c(θ)

∂θj

h(x) exp

(
k∑

i=1

θiti(x)

)
+ c(θ)h(x)tj(x) exp

(
k∑

i=1

θiti(x)

)}
dx

=
∫ ∞
−∞

{
1

c(θ)

∂c(θ)

∂θj

+ tj(x)

}
f(x|θ) dx =

∫ ∞
−∞

{
∂

∂θj

log c(θ) + tj(x)

}
f(x|θ) dx (†)

= E

(
∂

∂θj

log c(θ) + tj(X)

)

Thus Etj(X) = − ∂
∂θj

log c(θ). Now do the same thing over again: Differenti-

ate the integral (†) with respect to θj, take the derivative inside the integral,
and use the product rule and the fact (essentially demonstrated above) that
∂

∂θj
f(x|θ) =

{
∂

∂θj
log c(θ) + tj(x)

}
f(x|θ) to obtain the following:

0 =
∫ ∞
−∞

 ∂2

∂θ2
j

log c(θ) +

(
∂

∂θj

log c(θ) + tj(x)

)2
 f(x|θ) dx

=
∂2

∂θ2
j

log c(θ) + E

(
∂

∂θj

log c(θ) + tj(X)

)2

=
∂2

∂θ2
j

log c(θ) + Var (tj(X))

since Etj(X) = − ∂
∂θj

log c(θ). Thus Var(tj(X)) = − ∂2

∂θ2
j
log c(θ).

3.32(b) The Gamma(α, β) pdf is

f(x|α, β) =
xα−1e−x/β

βαΓ(α)
for x > 0

= x−1I(x > 0)
1

βαΓ(α)
exp

{
α log x +

−1

β
x

}

= h(x)
(−η2)

η1

Γ(η1)
exp {η1 log x + η2 x} .
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Using the identities from part (a) with j = 2 we then obtain

EX = − ∂

∂η2

log

(
(−η2)

η1

Γ(η1)

)

= − ∂

∂η2

(η1 log(−η2)− log Γ(η1))

=
η1

(−η2)
= αβ ,

Var(X) = − ∂2

∂η2
2

log

(
(−η2)

η1

Γ(η1)

)

=
∂

∂η2

η1

(−η2)

=
η1

η2
2

= αβ2 .

6.16
See the discussion of the multinomial distribution in Section 4.6. Right

now we need only the formula for the joint pmf given on page 180.
See also the definition of a curved exponential family in Section 3.4 on

page 115.
(a) Let the cell probabilities be denoted p1, p2, p3, p4. The vector (x1, x2, x3, x4)

has a multinomial distribution with m trials and cell probabilities p1, p2, p3, p4.
Since p2 = p3 and x4 = n− x1− x2− x3, we may write the multinomial joint
pmf as

f(x1, x2, x3, x4 | θ) =
m!

x1!x2!x3!x4!
px1

1 px2
2 px3

3 px4
4

=
m!

x1!x2!x3!x4!
px1

1 px2+x3
2 p

m−x1−(x2+x3)
4

=
m!

x1!x2!x3!x4!
pm

4

(
p1

p4

)x1
(

p2

p4

)x2+x3

= h(x)c(θ) exp (w1(θ)t1(x) + w2(θ)t2(x))

where

h(x) =
m!

x1!x2!x3!x4!
, c(θ) = pm

4 = (θ/4)m , t(x) = (x1, x2 + x3) ,
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w(θ) = (log(p1/p4), log(p2/p4)) =

(
log

(
2 + θ

θ

)
, log

(
1− θ

θ

))

so that the joint pmf is a curved exponential family where the dimension of
the parameter θ is d = 1 and the number of terms in the exponent is k = 2.
The family is “curved” since d < k.

Comment: The terminology “curved exponential family” arises because
when d < k the set of points {w(θ) : θ ∈ Θ} is a curve in the natural pa-
rameter space. In this case {w(θ) : 0 ≤ θ ≤ 1} is a 1-dimensional curve
in R2 which is the natural parameter space. Note that a curved exponen-
tial family never satisfies the OSC (open set condition) so that we cannot
use the usual theorem to prove completeness of the natural sufficient statis-
tic. In fact, in this case the natural sufficient statistic is not complete since
E
(
2x1 + (x2 + x3)− 3

2
m
)

= 0 for all θ, but P
(
2x1 + (x2 + x3)− 3

2
m
)

=

0) 6= 1.
(b) and (c) The natural sufficient statistic t(x) = (x1, x2 + x3) is (of

course) sufficient. To show it is minimal sufficient we apply the Lehmann-
Scheffe Theorem:

f(x | θ)
f(y | θ)

=
h(x)

h(y)
exp (a1w1(θ) + a2w2(θ))

where a1 = x1 − y1 and a2 = (x2 + x3) − (y2 + y3). This is constant in θ if
and only if

a1w1(θ) + a2w2(θ) is constant in θ.

With the expressions for w1(θ) and w2(θ) given above, this is “clearly” true
if and only if a1 = a2 = 0 which means (x1, x2 + x3) = (y1, y2 + y3). One
direction is immediate: if a1 = a2 = 0, then obviously a1w1(θ) + a2w2(θ) = 0
for all θ so that it is constant in θ. Now for the other direction. Assume there
exists some finite value c such that a1w1(θ) + a2w2(θ) = c for all θ. Then

lim
θ→1

(a1w1(θ) + a2w2(θ)) = c . (1)

But limθ→1 w1(θ) = log 3 and limθ→1 w2(θ) = −∞ so that (1) implies a2 = 0
(otherwise the limit would be either +∞ or −∞ depending on the sign of
a2). But now, since w1(θ) is not constant in θ, the only way that a1w1(θ)
can be constant in θ is for a1 = 0. Thus a1 = a2 = 0 as desired.
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6.22(a)
The solution in the manual is not detailed enough.
Showing that a particular statistic T (X) is not sufficient can be done

in (at least) three different ways. The first two ways described below are
relatively easy to carry out. The third approach can be difficult. If you know
a minimal sufficient statistic, the second approach is the easiest.

(1): The first approach uses the following result which can be proved
using the factorization criterion. (This result is one part of the Lehmann-
Scheffe Theorem.)

If T (X) is a sufficient statistic for θ, then for any two samples x and y:

If T (x) = T (y), then
f(x | θ)
f(y | θ)

is constant in θ.

Thus to show that a statistic T (X) is not sufficient, it suffices to find two
samples x and y with T (x) = T (y) for which the ratio above is not constant.

(2): The second approach uses the fact that a minimal sufficient statistic
must be a function of any other sufficient statistic. So, if S(X) is minimal
sufficient and S(X) cannot be expressed as a function of T (X), then T (X)
cannot be sufficient. It is usually pretty obvious whether or not one statistic
can be expressed as a function of another, but a formal proof can be obtained
as follows. If you can find two samples x and y for which T (x) = T (y) but
S(x) 6= S(y), then S cannot be expressed as a function of T .

(3): The third approach is to use the definition of a sufficient statistic.
Let T = T (X). A statistic is sufficient (for θ) if L(X |T ) does not depend on
θ. If you can show that the conditional distribution L(X |T ) does depend
on θ, then T cannot be sufficient.

6.22(a) by Method #2: In this problem, a minimal sufficient statistic
is
∏

Xi (or equivalently
∑

log Xi). To show that
∑

Xi is not sufficient, it
suffices to find two samples x and y for which

∑
xi =

∑
yi but

∏
xi 6=

∏
yi.

This is easy to do.
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