1 Sum of two independent random variables

1. $X \sim \operatorname{Bin}(n, p), Y \sim \operatorname{Bin}(m, p), X, Y$ independent of each other, then $X+Y \sim$ $\operatorname{Bin}(m+n, p)$
2. $X \sim \operatorname{Poiss}(\lambda), Y \sim \operatorname{Poiss}(\mu), X, Y$ independent of each other, $X+Y \sim \operatorname{Poiss}(\lambda+\mu)$
3. $X \sim \operatorname{Poiss}(\lambda), Y \sim \operatorname{Poiss}(\mu), X, Y$ independent of each other, $X \mid X+Y=k \sim$ $\operatorname{bin}(k, \lambda /(\lambda+\mu))$ and $Y \mid X+Y=k \sim \operatorname{bin}(k, \mu /(\lambda+\mu))$.
