1 Sum of two independent random variables

1. $X \sim \operatorname{Bin}(n, p), Y \sim \operatorname{Bin}(m, p)$, then $X+Y \sim \operatorname{Bin}(m+n, p)$
2. $X \sim \operatorname{Poiss}(\lambda), Y \sim \operatorname{Poiss}(\mu), X+Y \sim \operatorname{Poiss}(\lambda+\mu)$
3. If X and Y are independent Poisson random variables with respective parameters λ_{1} and λ_{2}, calculate the conditional distribution of X, given that $X+Y=n$ and Y, given that $X+Y=n$. These will be $\operatorname{Bin}\left(n, \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)$ and $\operatorname{Bin}\left(n, \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)$ respectively.
4. Suppose that the number of people that enter a post office on a given day is a Poisson random variable with parameter λ. Show that if each person that enters the post office is a male with probability p and a female with probability 1-p, then the number of males and females entering the post office are independent Poisson random variables with respective parameters λp and $\lambda(1-p)$.
(Let X and Y denotes the number of males and females that enter the post office. Then

$$
\begin{aligned}
P(X=i, Y=j)= & P(X=i, Y=j \mid X+Y=i+j) P(X+Y=i+j)+ \\
& P(X=i, Y=j \mid X+Y \neq i+j) P(X+Y \neq i+j) \\
= & P(X=i, Y=j \mid X+Y=i+j) P(X+Y=i+j)
\end{aligned}
$$

Since $(X+Y) \sim \operatorname{Poiss}(\lambda), P(X+Y=i+j)=\exp \{-\lambda\} \lambda^{i+j} /(i+j)$! and

$$
P(X=i, Y=j \mid X+Y=i+j)=\binom{i+j}{i} p^{i}(1-p)^{j}
$$

Hence

$$
\begin{aligned}
P(X=i, Y=j)=\binom{i+j}{i} & p^{i}(1-p)^{j} \exp \{-\lambda\} \lambda^{i+j} /(i+j)! \\
& =e^{-\lambda p} \frac{(\lambda p)^{i}}{i!} e^{-\lambda(1-p)} \frac{(\lambda(1-p))^{j}}{j!}
\end{aligned}
$$

Hence $X \sim \operatorname{Poisson}(\lambda p)$ and $Y \sim \operatorname{Poisson}(\lambda(1-p))$.)

