STA 4442/5440 Midterm 2 October 31, 2012

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Honor Code.

Signature: _____

INSTRUCTIONS:

- This is a closed-book, closed-notes exam. You may **not** refer to your notes, the text, or any other books. You may use a calculator.
- Total time is 70 minutes (11:05 A.M to 12:15 P.M.)
- Show all work, clearly and in order, if you want to receive full credit. When you use your calculator, explain all relevant mathematics. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 5 problems and is worth 80 points. It is your responsibility to make sure that you have all of the problems.
- Good luck!

Prob. No.	Max Points	Earned Pts.
1	20	
2	10	
3	20	
4	15	
5	15	

TOTAL: _____

Question 1. Independent trials, each resulting in a success with probability $\frac{2}{3}$, are performed 4 times. Let X be the total number of successes and $Y = \sin\left(\frac{\pi}{2}X\right)$.

(a) (12 points) Find $P(X \ge 1)$, expectation and variance of X.

(b) (8 points) Find the expectation of Y. (Use $\sin(0) = \sin(\pi) = \sin(2\pi) = 0$, $\sin(\pi/2) = 1$, $\sin(3\pi/2) = -1$) **Question 2.** (10pts.) While checking the galley proofs of a book, the authors found 1.6 printer's errors per page on average. Assuming printing errors to be independent across pages, what is the probability that in 4 consecutive pages, there are no errors on the first and third pages, and one error on each of the other two? (Hint: Use Poisson distribution)

Question 3. (20 pts.) An examination is often regarded as being good if the test scores of those taking the examination can be approximated by a normal density function. The instructor often uses the test scores to estimate the normal parameters μ and σ^2 and then assign the letter grade A to those whose test score is greater than $\mu + \sigma$, B to those whose score is between μ and $\mu + \sigma$, C to those whose score is between $\mu - \sigma$ and μ , D to those whose score is between $\mu - 2\sigma$ and $\mu - \sigma$, and F to those getting a score below $\mu - 2\sigma$. This is sometimes referred to as grading "on the curve". Find the probabilities that

- (a) a student gets a grade A
- (b) a student gets a grade B
- (c) a student gets a grade C
- (d) a student gets a grade D
- (e) a student gets a grade F

(Given $1 - \Phi(1) = 0.1587$, $\Phi(1) - \Phi(0) = 0.3413$, $\Phi(2) - \Phi(1) = 0.1359$, $\Phi(-2) = 0.0228$, where $\Phi(\cdot)$ denotes the standard normal cdf).

Question 4. (15 pts.) Suppose the pdf of a continuous random variable X is given by

$$f(x) = \begin{cases} \frac{1}{8} + \frac{3}{8}x, 0 \le x \le 2\\ 0, \text{ otherwise} \end{cases}$$

a) Find the cdf F(x).

b) $P(1 \le X \le 1.5)$.

Question 5. (15 pts.) You arrive at a bus stop at 10 am, knowing that the bus will arrive at some time uniformly distributed between 10 am and 10:30 am.

(a) Find the probability that you will have to wait longer than 10 minutes.

(b) If at 10:15 am the bus has not yet arrived, what is the probability that you will have to wait at least an additional 10 minutes?