STA 4442/5440 Midterm 2

October 31, 2012

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Honor Code.

Signature:

INSTRUCTIONS:

- This is a closed-book, closed-notes exam. You may not refer to your notes, the text, or any other books. You may use a calculator.
- Total time is 70 minutes (11:05 A.M to 12:15 P.M.)
- Show all work, clearly and in order, if you want to receive full credit. When you use your calculator, explain all relevant mathematics. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 5 problems and is worth 80 points. It is your responsibility to make sure that you have all of the problems.
- Good luck!

Prob. No.	Max Points	Earned Pts.
1	20	
2	10	
3	20	
4	15	
5	15	

\qquad

Question 1. Independent trials, each resulting in a success with probability $\frac{2}{3}$, are performed 4 times. Let X be the total number of successes and $Y=\sin \left(\frac{\pi}{2} X\right)$.
(a) (12 points) Find $P(X \geq 1)$, expectation and variance of X.
(b) (8 points) Find the expectation of Y.
(Use $\sin (0)=\sin (\pi)=\sin (2 \pi)=0, \sin (\pi / 2)=1, \sin (3 \pi / 2)=-1$)

Question 2. (10pts.) While checking the galley proofs of a book, the authors found 1.6 printer's errors per page on average. Assuming printing errors to be independent across pages, what is the probability that in 4 consecutive pages, there are no errors on the first and third pages, and one error on each of the other two? (Hint: Use Poisson distribution)

Question 3. (20 pts.) An examination is often regarded as being good if the test scores of those taking the examination can be approximated by a normal density function. The instructor often uses the test scores to estimate the normal parameters μ and σ^{2} and then assign the letter grade A to those whose test score is greater than $\mu+\sigma, \mathrm{B}$ to those whose score is between μ and $\mu+\sigma, C$ to those whose score is between $\mu-\sigma$ and μ, D to those whose score is between $\mu-2 \sigma$ and $\mu-\sigma$, and F to those getting a score below $\mu-2 \sigma$. This is sometimes referred to as grading "on the curve". Find the probabilities that
(a) a student gets a grade A
(b) a student gets a grade B
(c) a student gets a grade C
(d) a student gets a grade D
(e) a student gets a grade F
(Given $1-\Phi(1)=0.1587, \Phi(1)-\Phi(0)=0.3413, \Phi(2)-\Phi(1)=0.1359, \Phi(-2)=0.0228$, where $\Phi(\cdot)$ denotes the standard normal cdf).

Question 4. (15 pts .) Suppose the pdf of a continuous random variable X is given by

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{8}+\frac{3}{8} x, 0 \leq x \leq 2 \\
0, \text { otherwise }
\end{array}\right.
$$

a) Find the cdf $F(x)$.
b) $P(1 \leq X \leq 1.5)$.

Question 5. (15 pts .) You arrive at a bus stop at 10 am , knowing that the bus will arrive at some time uniformly distributed between 10 am and 10:30 am.
(a) Find the probability that you will have to wait longer than 10 minutes.
(b) If at 10:15 am the bus has not yet arrived, what is the probability that you will have to wait at least an additional 10 minutes?

