STA 4442/5440 Midterm 2 Practice 1

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Honor Code.

Signature:

INSTRUCTIONS:

- This is a closed-book, closed-notes exam. You may not refer to your notes, the text, or any other books. You may use a calculator.
- Total time is 70 minutes (11:05 A.M to 12:15 P.M.)
- Show all work, clearly and in order, if you want to receive full credit. When you use your calculator, explain all relevant mathematics. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 6 problems and is worth 80 points. It is your responsibility to make sure that you have all of the problems.
- Good luck!

Prob. No.	Max Points	Earned Pts.
1	20	
2	10	
3	20	
4	10	
5	10	
6	10	

\qquad

Question 1. (20 pts.) In actuarial science, one of the models used for describing mortality is

$$
f(x)=\left\{\begin{array}{l}
C x^{2}(100-x)^{2}, 0 \leq x \leq 100 \\
0, \text { otherwise }
\end{array}\right.
$$

where x denotes the age at which a person dies.
(a) Find the value of C.
b) Let A be the event "Person lives past 60." Find $P(A)$.
c) Find the expected mortality.

Question 2. (10 pts .) X and Y are two discrete random variables taking values $-1,0$ and +1 each with joint probability given by

Table 1: Joint probability Table

$Y \downarrow X \rightarrow$	-1	0	+1	Total
-1	0	$1 / 4$	0	$1 / 4$
0	$1 / 4$	0	$1 / 4$	$1 / 2$
+1	0	$1 / 4$	0	$1 / 4$
Total	$1 / 4$	$1 / 2$	$1 / 4$	1

a) Find marginal p.m.f of X and Y.
b) Find whether X and Y are independent or not.

Question 3. (20 pts.) The figure is the probability density curve of the random variable X.

a) Find b so that $f(x)$ is a probability density function.
b) What is $\mathrm{P}(-4 \leq X \leq 3)$?
c) What is $\mathrm{P}(X=1)$?
d) What is $E(X)$?

Question 4. (10 pts .) Two species are competing in a region for control of a limited amount of a certain resource. Let $X=$ proportion of resource controlled by one species and suppose $X \sim$ $\operatorname{Unif}([0,1])$. Let $h(X)=\max (X, 1-X)$, then $h(X)$ is the amount of resource controlled by the superior species.
a) Find $E(h(X))$.
b) Find $\operatorname{Var}(h(X))$.

Question 5. (10 pts .) Buses arrive at a specified stop at 15 -minute intervals starting at $7 \mathrm{a} . \mathrm{m}$. That is, they arrive at $7,7: 15,7: 30,7: 45$, and so on. If a passenger arrives at the stop at a time that is uniformly distributed between 7 and $7: 30$, find the probability that she waits
(a) less than 5 minutes for a bus.
(b) more than ten minutes for a bus.

Question 6. (10 pts .) A point is picked randomly from the interval $[0, L]$.
(a) Define suitably a random variable X denoting the ratio of the length of the shorter and the longer interval formed.
(b) Find $P(X>0.5)$.
(c) Find $E(X)$.

