STA 4442/5440 Midterm 2 Practice 1 November 7, 2012

Name:

FSUID:

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Honor Code.

Signature: _____

INSTRUCTIONS:

- This is a closed-book, closed-notes exam. You may **not** refer to your notes, the text, or any other books. You may use a calculator.
- Total time is 70 minutes (11:05 A.M to 12:15 P.M.)
- Show all work, clearly and in order, if you want to receive full credit. When you use your calculator, explain all relevant mathematics. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 6 problems and is worth 80 points. It is your responsibility to make sure that you have all of the problems.

• Good luck!

Prob. No.	Max Points	Earned Pts.
1	20	
2	10	
3	20	
4	10	
5	10	
6	10	

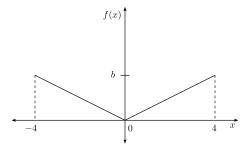
TOTAL: _____

Question 1. (20 pts.) In actuarial science, one of the models used for describing mortality is

$$f(x) = \begin{cases} Cx^{2}(100 - x)^{2}, 0 \le x \le 100\\ 0, \text{ otherwise} \end{cases}$$

where x denotes the age at which a person dies.

- (a) Find the value of C.
- b) Let A be the event "Person lives past 60." Find P(A).
- c) Find the expected mortality.


Question 2. (10 pts.) X and Y are two discrete random variables taking values -1, 0 and +1 each with joint probability given by

$Y \downarrow X \rightarrow$	-1	0	+1	Total
-1	0	1/4	0	1/4
0	1/4	0	1/4	1/2
+1	0	1/4	0	1/4
Total	1/4	1/2	1/4	1

Table 1: Joint probability Table

- a) Find marginal p.m.f of X and Y.
- b) Find whether X and Y are independent or not.

Question 3. (20 pts.) The figure is the probability density curve of the random variable X.

- a) Find b so that f(x) is a probability density function.
- b) What is $P(-4 \le X \le 3)$?
- c) What is P(X = 1)?
- d) What is E(X)?

Question 4. (10 pts.) Two species are competing in a region for control of a limited amount of a certain resource. Let X =proportion of resource controlled by one species and suppose $X \sim \text{Unif}([0,1])$. Let $h(X) = \max(X, 1 - X)$, then h(X) is the amount of resource controlled by the superior species.

a) Find E(h(X)).

b) Find Var(h(X)).

Question 5. (10 pts.) Buses arrive at a specified stop at 15-minute intervals starting at 7 a.m. That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time that is uniformly distributed between 7 and 7:30, find the probability that she waits

- (a) less than 5 minutes for a bus.
- (b) more than ten minutes for a bus.

Question 6. (10 pts.) A point is picked randomly from the interval [0, L].

(a) Define suitably a random variable X denoting the ratio of the length of the shorter and the longer interval formed.

(b) Find P(X > 0.5).

(c) Find E(X).