Bayes methods for categorical data

April 25, 2017

Motivation for joint probability models

- Increasing interest in high-dimensional data in broad applications
- Focus may be on prediction, variable selection, inference on dependence, etc
- Most literature focuses on $y_{i}=\left(y_{i 1}, \ldots, y_{i p}\right)^{T} \in \Re^{p}$
- Today's focus: general class of flexible joint probability models for high-dimensional categorical data

Motivation for joint probability models

- Flexible joint probability model for y_{i} can be used directly to predict a subset of the elements of y_{i} given the other values
- Univariate \& multivariate classification problems dealt with automatically
- Accommodates higher order interactions automatically without explicitly parameterizing these interactions
- Joint modeling of responses \& predictors makes it easy to handle missing data
- Adapted easily for joint nonparametric modeling for general data types (functions, images, text, etc) by using the model for latent class indices

Motivating application

- Modeling dependence of nucleotides within the p53 transcription factor binding motif.
- p53 tumor-suppressor = short DNA sequence, regulates the expression of genes involved in variety of cellular functions.
- A, C, G, T nucleotides at 20 positions for 574 sequences (Wei et al. 2006).
- Flexibly characterize the dependence structure and test for positional dependencies.
- Models of nucleotide sequences useful for finding gene regulatory regions \& for other uses

Recap: Modeling multivariate ordinal data

- Suppose we have $y_{i} \in\{1, \ldots, C\}$, with the ordering in the levels important
- For example, y_{i} may measure severity of response, with $y_{i}=1$ mild, $y_{i}=2$ moderate, $y_{i}=3$ severe.
- Likelihood of data is multinomial:

$$
\prod_{i=1}^{n} \prod_{j=1}^{C} \pi_{i j}^{l\left(y_{i j}=j\right)}
$$

where $\pi_{i j}=\operatorname{Pr}\left(y_{i}=j \mid x_{i}\right)$-how to model??

Recap: Ordinal Response Regression

- A typical approach is to let

$$
\operatorname{Pr}\left(y_{i} \leq j \mid x_{i}\right)=F\left(\alpha_{j}-x_{i}^{\prime} \beta\right),
$$

where $F(\cdot)$ is a cdf

- Here, $-\infty=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{C-1}<\alpha_{C}=\infty$ characterize the baseline distribution of the categorical response.
- For example, if we choose $F(z)=\Phi(z)$, then we obtain a generalized probit model
- If we choose $F(z)=1 /\{1+\exp (-z)\}$, then we obtain a generalized logit model
- These models represent direct extensions of probit and logistic regression models for binary response data.

Recap: Modeling multivariate nominal data

- $y_{i}=\left(y_{i 1}, \ldots, y_{i p}\right)^{T}$, with $y_{i j} \in\left\{1, \ldots, d_{j}\right\}$.
- Generalized latent trait models (GTLM) accommodate different data types (continuous, count, binary, ordinal).
- Define glm for each outcome with shared normal latent traits in these models (Sammel et al., 1997; Moustaki \& Knott, 2000; Dunson, 2000, 2003).
- Motivated by the nucleotide application, Barash et al. (2003) used Bayes networks (BN) to explore models with varying degrees of complexity.
- Even with very efficient model search algorithms, only feasible to visit a tiny subset of the model space for moderate p.
- Difficult to define an appropriate penalty for model complexity, overfitting tends to occur in practical examples.

Recap: Multivariate probit models

- Link each $y_{i j}$ to an underlying continuous variable $z_{i j}$, with $y_{i j}$ assumed to arise via thresholding $z_{i j}$.
- When $y_{i j} \in\{0,1\}$, a MVN on $z_{i}=\left(z_{i 1}, \ldots, z_{i p}\right)^{T}$ induces the widely used multivariate probit model (Ashford and Sowden, 1970; Chib and Greenberg, 1998).
- Can accommodate nominal data with $d_{j}>2$ by introducing a vector of variables $z_{i j}=\left(z_{i j 1}, \ldots, z_{i j d_{j}}\right)^{T}$ underlying $y_{i j}$ with $y_{i j}=l$ if $z_{i j l}=\max z_{i j}$:
multivariate multinomial probit model.
- Model z_{i} as $\sum_{j=1}^{p} d_{j}$ dimensional Gaussian with covariance matrix Σ.

Recap: Multivariate probit models

- A Gaussian latent variable needed for each level of the response.
- The relationship between the dependence in the latent variables and dependence in the observed categorical variables is complex and difficult to interpret.
- Need to constrain at least p diagonal elements of Σ for identifiability.
- Complicates sampling from the full conditional posterior of Σ.
- Zhang et al. $(2006,2008)$ used parameter-expanded MH for posterior computation in multivariate multinomial probit models.

Background on factor models

- When $y_{i} \in \Re^{p}$, factor models useful for dimension reduction (West 03; Carvalho et al. 08; Bhattacharya \& Dunson 10)
- Explain dependence among high dimensional observations through $k \ll p$ underlying factors.
- The Gaussian linear factor model is most commonly used,

$$
y_{i}=\mu+\Lambda \eta_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N_{p}(0, \Sigma), \quad i=1, \ldots, n,
$$

- Λ is a $p \times k$ factor loadings matrix, $\eta_{i} \sim N_{k}\left(0, I_{k}\right)$ are latent factors. Marginally, $y_{i} \sim N_{p}(0, \Omega)$ with $\Omega=\Lambda \Lambda^{T}+\Sigma$.
- Easily adapted to accommodate binary \& ordered categorical $y_{i j}^{\prime} s$ through use of underlying variables

Motivation

- Aim to explain dependence among the high-dimensional nominal variables in terms of relatively few latent factors.
- Similar to Gaussian factor models, but factors on simplex more natural here.
- Joint distribution of y_{i} induced by our model corresponds to a PARAFAC decomposition (De Lathauwer et al., 2000) of probability tensors.
- Related to mixed membership models, such as latent Dirichlet allocation (Blei et al. 2003) for topic modeling, also Pritchard et al. (2000, 2003).

Product multinomial models for MOC data (Dunson \& Xing, 2009 JASA)

- Focus on $p=2$, so that data for subject i consist of a pair of categorical variables, $x_{i}=\left(x_{i 1}, x_{i 2}\right)^{\prime}$.
- Results in a $d_{1} \times d_{2}$ contingency table with cell one can let $(c 1, c 2)$ containing the count $\sum_{i=1}^{n} 1\left(x_{i 1}=c_{1}, x_{i 2}=c_{2}\right)$, for $c_{1}=1, \ldots, d_{1}$ and $c_{2}=1, \ldots, d_{2}$.
- Our focus is on parsimonious modeling of the cell probabilities, $\pi=\left\{\pi_{c_{1} c_{2}}\right\}$, with $\pi_{c_{1} c_{2}}=\operatorname{Pr}\left(x_{i 1}=c_{1}, x_{i 2}=c_{2}\right)$.
- Reduce $d_{1} d_{2}-1$ free parameters.
- Let $\psi^{(1)}, \psi^{(2)} \in \mathcal{S}_{d_{1}-1} \times \mathcal{S}_{d_{2}-1}$
- One simple way is to have $\operatorname{Pr}\left(x_{i 1}=c_{1}\right)=\psi_{c_{1}}^{(1)}$ and $\operatorname{Pr}\left(x_{i 2}=c_{2}\right)=\psi_{c_{2}}^{(2)}$ with $x_{i 1}$ and $x_{i 2}$ independent.
- In this case, we obtain $\pi_{c_{1} c_{2}}=\psi_{c_{1}}^{(1)} \psi_{c_{2}}^{(2)}$.
- Highly parsimonious $d_{1}+d_{2}-2$ free parameters.

Product multinomial models for MOC data (Dunson \& Xing, 2009 JASA)

- Overly restrictive
- Latent structure analysis (Lazarsfeld and Henry 1968; Goodman 1974)
- Relies on the finite mixture specification

$$
\operatorname{Pr}\left(x_{i 1}=c_{1}, x_{i 2}=c_{2}\right)=\pi_{c_{1} c_{2}}=\sum_{h=1}^{k} \nu_{h} \psi_{h c_{1}}^{(1)} \psi_{h c_{2}}^{(2)}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{k}\right)^{\prime}$ is a vector of mixture probabilities,

- $z_{i} \in\{1, \ldots, k\}$ denotes a latent class index,
- $\operatorname{Pr}\left(x_{i 1}=c_{1} \mid z_{i}=h\right)=\psi_{h c_{1}}^{(1)}$ is the probability of $x_{i 1}=c_{1}$ in class h,
- $\operatorname{Pr}\left(x_{i 2}=c_{2} \mid z_{i}=h\right)=\psi_{h c_{1}}^{(2)}$ is the probability of $x_{i 2}=c_{2}$ in class h
- $x_{i 1}$ and $x_{i 2}$ are conditionally independent given z_{i}.

Basic facts about tensors

- Let $\Pi_{d_{1} \ldots d_{p}}=$ set of probability tensors, with $\pi \in \Pi_{d_{1} \ldots d_{p}} \rightarrow$

$$
\pi=\left\{\pi_{c_{1} \ldots c_{p}} \geq 0, c_{j}=1, \ldots, d_{j}, j=1, \ldots, p: \sum_{c_{1}=1}^{d_{1}} \ldots \sum_{c_{p}=1}^{d_{p}} \pi_{c_{1} \ldots c_{p}}=1\right\}
$$

- A decomposed tensor (Kolda, 2001) $\mathbf{D}=\mathbf{u}^{(1)} \otimes \mathbf{u}^{(2)} \ldots \otimes \mathbf{u}^{(p)}$, or elementwise, $D_{c_{1} \ldots c_{p}}=u_{c_{1}}^{(1)} u_{c_{2}}^{(2)} \ldots u_{c_{p}}^{(p)}$.
- PARAFAC rank (Harshman, 1970) - minimal r such that \mathbf{D} is a sum of r decomposed tensors.

Nonnegative tensor factorizations

- Dunson \& Xing (2009) decompose probability tensor π as

$$
\begin{equation*}
\pi_{c_{1} \ldots c_{p}}=\sum_{h=1}^{k} \nu_{h} \psi_{h c_{1}}^{(1)} \ldots \psi_{h c_{p}}^{(p)} \tag{1}
\end{equation*}
$$

where $\nu_{h}=\operatorname{pr}\left(z_{i}=h\right)$, and $\psi_{h}^{(j)} \in \mathcal{S}_{d_{j}-1}$.

- (1) is a form of non-negative PARAFAC decomposition

Infinite Mixture of Product Multinomials

- Although any multivariate categorical data distribution can be expressed as above for for a sufficiently large k, a number of practical issues arise in the implementation.
- Firstly, it is not straightforward to obtain a well-justified approach for estimation of k.
- Because the data are often very sparse with most of the cells in the $d_{1} \cdots d_{p}$ contingency table being empty, a unique maximum likelihood estimate of the parameters often does not exist even when a modest k is chosen.
- Such problems may lead one to choose a very small k, which may be insufficient
- Follow a Bayesian nonparametric approach

Infinite Mixture of Product Multinomials

- We propose to induce a prior, $\pi \sim P$ through the following specification

$$
\begin{aligned}
\pi & =\sum_{h=1}^{\infty} \nu_{h} \Psi_{h}, \quad \Psi_{h}=\psi_{h}^{(1)} \otimes \cdots \otimes \psi_{h}^{(p)} \\
\psi_{h}^{(j)} & \sim P_{0 j}, \text { independently for } j=1, \ldots, p ; h=1, \ldots, \infty \\
\nu & \sim Q .
\end{aligned}
$$

- $P_{0 j}$ is a probability measure on $\mathcal{S}_{d_{j}-1}$.
- Q is a probability measure on the countably infinite probability simplex, \mathcal{S}_{∞}.

Choice of prior for $P_{0 j}$ and Q

- $P_{0 j}$ may correspond to a Dirichlet measure with

$$
\psi_{h}^{(j)} \sim \operatorname{Diri}\left(a_{j 1}, \ldots, a_{j c_{j}}\right)
$$

- Q corresponds to a Dirichlet process $\sum_{h} \pi_{h} \delta_{h}$ where $\pi_{h}=V_{h} \prod_{l<h}\left(1-V_{l}\right)$ with $V_{h} \sim \operatorname{beta}(1, \alpha)$ independently for $h=1, \ldots, \infty$ where $\alpha>0$ is a precision parameter characterizing Q.

Testing and Inferences

- Interest to test for independence of the elements of $x_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{\prime}$.
- In the motif application, considerable debate on the appropriateness of the independence assumption
- Under our proposed formulation, the null hypothesis of independence is nested within a nonparametric alternative that accommodates a sequence of models of increasing complexity including the saturated model.
- In particular, the independence model corresponds to $H_{0}: \nu_{1}=1$.
- As noted in Berger and Sellke (1987), interval null hypotheses are often preferred to point null hypotheses.

Testing and Inferences

- Motivated by this reasoning and by computational considerations, we focus instead on the interval null

$$
H 0: \nu_{*}>1-\epsilon, \quad \nu_{*}=\max \left\{\nu_{h}, h=1, \ldots, k_{*}\right\}
$$

- Fix $\epsilon>0$ (usually 0.05)

Measures of association for nominal data

- Infer dependence structure from pairwise dependencies between $y_{i j}$ and $y_{i j^{\prime}}$ for $j \neq j^{\prime} \in\{1, \ldots, p\}$
- Pairwise Cramer's V association matrix $\rho=\left(\rho_{j j^{\prime}}\right)$

$$
\rho_{j j^{\prime}}^{2}=\frac{1}{\min \left\{d_{j}, d_{j^{\prime}}\right\}-1} \sum_{c_{j}=1}^{d_{j}} \sum_{c_{j^{\prime}}=1}^{d_{j^{\prime}}} \frac{\left(\pi_{c_{j} c_{j^{\prime}}}-\bar{\psi}_{c_{j}}^{(j)} \bar{\psi}_{c_{j^{\prime}}}^{\left(j^{\prime}\right)}\right)^{2}}{\bar{\psi}_{c_{j}}^{(j)} \bar{\psi}_{c_{j^{\prime}}}^{\left(j^{\prime}\right)}}
$$

with $\bar{\psi}_{l}^{(j)}=\sum_{h=1}^{k^{*}} \nu_{h} \psi_{h l}^{(j)}$.

- $\rho_{j j^{\prime}}$ ranges from 0 to 1 , with $\rho_{j j^{\prime}} \approx 0$ when $x_{i j}$ and $x_{i j^{\prime}}$ are independent.

Measures of association for nominal data

- Posterior distribution of $\rho_{j j^{\prime}}$ for all $\left(j, j^{\prime}\right)$ pairs based on the output of the Gibbs sampler.
- Construct recommend reporting a $p \times p$ association matrix, with the elements corresponding to posterior means for each $\rho_{i j}$.
- In addition, we can calculate posterior probabilities and Bayes factors for local null hypotheses, $H_{1, j j^{\prime}}$: $\rho_{j j^{\prime}}>\epsilon$ from the Gibbs sampler output.

Simulation studies

- Simulated data consisted of A, C, G, T nucleotides ($d_{j}=d=4$) at $p=20$ positions for $n=100$ sequences.
- 2 settings: generate the nucleotides (1) independently, and (2) assuming dependence in locations 2, 4, 12, and 14.

Simulation studies

Figure 1. Histograms of estimated posterior probabilities of H_{1} in each of the 100 simulations under (a) case 1 (no positional dependence- H_{0} is true) and (b) case 2 (positional dependence- H_{1} is true).

Simulation studies

Figure 2. Results of simulation case 2-percentages of simulations for which (a) $\operatorname{Pr}\left(H_{1 i j^{\prime}} \mid \mathbf{X}\right)>0.95$, and (b) the Xie and Geng (2008) method estimated an association between positions j, j^{\prime}. The true model has dependence in positions 2, 4, 12, and 14 .

