## Bayes methods for categorical data

April 25, 2017

## Motivation for joint probability models

- Increasing interest in high-dimensional data in broad applications
- Focus may be on prediction, variable selection, inference on dependence, etc
- ▶ Most literature focuses on  $y_i = (y_{i1}, ..., y_{ip})^T \in \Re^p$
- ► Today's focus: general class of <u>flexible</u> joint probability models for high-dimensional categorical data

## Motivation for joint probability models

- ▶ Flexible joint probability model for  $y_i$  can be used directly to predict a subset of the elements of  $y_i$  given the other values
- Univariate & multivariate classification problems dealt with automatically
- Accommodates higher order interactions automatically without explicitly parameterizing these interactions
- Joint modeling of responses & predictors makes it easy to handle missing data
- Adapted easily for joint nonparametric modeling for general data types (functions, images, text, etc) by using the model for latent class indices

## Motivating application

- ► Modeling dependence of nucleotides within the p53 transcription factor binding motif.
- ▶ p53 tumor-suppressor = short DNA sequence, regulates the expression of genes involved in variety of cellular functions.
- ▶ A, C, G, T nucleotides at 20 positions for 574 sequences (Wei et al. 2006).
- Flexibly characterize the dependence structure and test for positional dependencies.
- Models of nucleotide sequences useful for finding gene regulatory regions & for other uses

### Recap: Modeling multivariate ordinal data

- ▶ Suppose we have  $y_i \in \{1, ..., C\}$ , with the ordering in the levels important
- ▶ For example,  $y_i$  may measure severity of response, with  $y_i = 1$  mild,  $y_i = 2$  moderate,  $y_i = 3$  severe.
- ▶ Likelihood of data is multinomial:

$$\prod_{i=1}^n \prod_{j=1}^C \pi_{ij}^{I(y_{ij}=j)}$$

where  $\pi_{ij} = Pr(y_i = j \mid x_i)$ -how to model??

## Recap: Ordinal Response Regression

A typical approach is to let

$$Pr(y_i \leq j \mid x_i) = F(\alpha_j - x_i'\beta),$$

where  $F(\cdot)$  is a cdf

- ▶ Here,  $-\infty = \alpha_0 < \alpha_1 < \ldots < \alpha_{C-1} < \alpha_C = \infty$  characterize the baseline distribution of the categorical response.
- ► For example, if we choose  $F(z) = \Phi(z)$ , then we obtain a generalized probit model
- ▶ If we choose  $F(z) = 1/\{1 + exp(-z)\}$ , then we obtain a generalized logit model
- ► These models represent direct extensions of probit and logistic regression models for binary response data.

## Recap: Modeling multivariate nominal data

- ▶  $y_i = (y_{i1}, ..., y_{ip})^T$ , with  $y_{ij} \in \{1, ..., d_j\}$ .
- Generalized latent trait models (GTLM) accommodate different data types (continuous, count, binary, ordinal).
- ▶ Define glm for each outcome with shared normal latent traits in these models (Sammel et al., 1997; Moustaki & Knott, 2000; Dunson, 2000, 2003).
- Motivated by the nucleotide application, Barash et al. (2003) used Bayes networks (BN) to explore models with varying degrees of complexity.
- ► Even with very efficient model search algorithms, only feasible to visit a tiny subset of the model space for moderate *p*.
- Difficult to define an appropriate penalty for model complexity, overfitting tends to occur in practical examples.

## Recap: Multivariate probit models

- ▶ Link each  $y_{ij}$  to an underlying continuous variable  $z_{ij}$ , with  $y_{ij}$  assumed to arise via thresholding  $z_{ij}$ .
- ▶ When  $y_{ij} \in \{0,1\}$ , a MVN on  $z_i = (z_{i1}, \dots, z_{ip})^T$  induces the widely used multivariate probit model (Ashford and Sowden, 1970; Chib and Greenberg, 1998).
- ▶ Can accommodate nominal data with  $d_j > 2$  by introducing a vector of variables  $z_{ij} = (z_{ij1}, \ldots, z_{ijd_j})^T$  underlying  $y_{ij}$  with  $y_{ij} = I$  if  $z_{ijl} = \max z_{ij}$ : multivariate multinomial probit model.
- ▶ Model  $z_i$  as  $\sum_{j=1}^p d_j$  dimensional Gaussian with covariance matrix  $\Sigma$ .

## Recap: Multivariate probit models

- ► A Gaussian latent variable needed for each level of the response.
- ► The relationship between the dependence in the latent variables and dependence in the observed categorical variables is complex and difficult to interpret.
- Need to constrain at least p diagonal elements of  $\Sigma$  for identifiability.
- ightharpoonup Complicates sampling from the full conditional posterior of  $\Sigma$ .
- ➤ Zhang et al. (2006, 2008) used parameter-expanded MH for posterior computation in multivariate multinomial probit models.

## Background on factor models

- ▶ When  $y_i \in \Re^p$ , factor models useful for dimension reduction (West 03; Carvalho et al. 08; Bhattacharya & Dunson 10)
- Explain dependence among high dimensional observations through  $k \ll p$  underlying factors.
- ▶ The Gaussian linear factor model is most commonly used,

$$y_i = \mu + \Lambda \eta_i + \epsilon_i, \quad \epsilon_i \sim N_p(0, \Sigma), \quad i = 1, \dots, n,$$

- ▶  $\Lambda$  is a  $p \times k$  factor loadings matrix,  $\eta_i \sim N_k(0, I_k)$  are latent factors. Marginally,  $y_i \sim N_p(0, \Omega)$  with  $\Omega = \Lambda \Lambda^{\mathrm{T}} + \Sigma$ .
- ▶ Easily adapted to accommodate binary & ordered categorical  $y'_{ij}s$  through use of underlying variables

#### Motivation

- ▶ Aim to explain dependence among the high-dimensional nominal variables in terms of relatively few latent factors.
- Similar to Gaussian factor models, but factors on simplex more natural here.
- ▶ Joint distribution of *y<sub>i</sub>* induced by our model corresponds to a <u>PARAFAC</u> decomposition (De Lathauwer et al., 2000) of probability tensors.
- ▶ Related to mixed membership models, such as latent Dirichlet allocation (Blei et al. 2003) for topic modeling, also Pritchard et al. (2000, 2003).

# Product multinomial models for MOC data (Dunson & Xing, 2009 JASA)

- ▶ Focus on p = 2, so that data for subject i consist of a pair of categorical variables,  $x_i = (x_{i1}, x_{i2})'$ .
- ▶ Results in a  $d_1 \times d_2$  contingency table with cell one can let  $(c_1, c_2)$  containing the count  $\sum_{i=1}^n 1(x_{i1} = c_1, x_{i2} = c_2)$ , for  $c_1 = 1, \ldots, d_1$  and  $c_2 = 1, \ldots, d_2$ .
- ▶ Our focus is on parsimonious modeling of the cell probabilities,  $\pi = \{\pi_{c_1c_2}\}$ , with  $\pi_{c_1c_2} = Pr(x_{i1} = c_1, x_{i2} = c_2)$ .
- ▶ Reduce  $d_1d_2 1$  free parameters.
- ▶ Let  $\psi^{(1)}, \psi^{(2)} \in \mathcal{S}_{d_1-1} \times \mathcal{S}_{d_2-1}$
- ▶ One simple way is to have  $Pr(x_{i1} = c_1) = \psi_{c_1}^{(1)}$  and  $Pr(x_{i2} = c_2) = \psi_{c_2}^{(2)}$  with  $x_{i1}$  and  $x_{i2}$  independent.
- ▶ In this case, we obtain  $\pi_{c_1c_2} = \psi_{c_1}^{(1)}\psi_{c_2}^{(2)}$ .
- ▶ Highly parsimonious  $d_1 + d_2 2$  free parameters.



## Product multinomial models for MOC data (Dunson & Xing, 2009 JASA)

- Overly restrictive
- Latent structure analysis (Lazarsfeld and Henry 1968; Goodman 1974)
- Relies on the finite mixture specification

$$Pr(x_{i1} = c_1, x_{i2} = c_2) = \pi_{c_1 c_2} = \sum_{h=1}^{\kappa} \nu_h \psi_{hc_1}^{(1)} \psi_{hc_2}^{(2)}$$

where  $\nu = (\nu_1, \dots, \nu_k)'$  is a vector of mixture probabilities,

- ▶  $z_i \in \{1, ..., k\}$  denotes a latent class index,
- ▶  $Pr(x_{i1} = c_1 \mid z_i = h) = \psi_{hc_1}^{(1)}$  is the probability of  $x_{i1} = c_1$  in class h.
- ►  $Pr(x_{i2} = c_2 \mid z_i = h) = \psi_{hc_1}^{(2)}$  is the probability of  $x_{i2} = c_2$  in class h
- $x_{i1}$  and  $x_{i2}$  are conditionally independent given  $z_i$ .



#### Basic facts about tensors

lacksquare Let lacksquare  $d_{1...d_p}=$  set of probability tensors, with  $m{\pi}\in m{\Pi}_{d_1...d_p}
ightarrow$ 

$$m{\pi} = ig\{ \pi_{c_1...c_p} \geq 0, \ c_j = 1, \ldots, d_j, j = 1, \ldots, p \ : \ \sum_{c_1 = 1}^{d_1} \ldots \sum_{c_p = 1}^{d_p} \pi_{c_1...c_p} = 1 ig\}$$

- ▶ A <u>decomposed tensor</u> (Kolda, 2001)  $\mathbf{D} = \mathbf{u}^{(1)} \otimes \mathbf{u}^{(2)} \dots \otimes \mathbf{u}^{(p)}$ , or elementwise,  $D_{c_1 \dots c_p} = u_{c_1}^{(1)} u_{c_2}^{(2)} \dots u_{c_p}^{(p)}$ .
- ► <u>PARAFAC</u> rank (Harshman, 1970) minimal *r* such that **D** is a sum of *r* decomposed tensors.

## Nonnegative tensor factorizations

▶ Dunson & Xing (2009) decompose probability tensor  $\pi$  as

$$\pi_{c_1...c_p} = \sum_{h=1}^k \nu_h \psi_{hc_1}^{(1)} \dots \psi_{hc_p}^{(p)}$$
 (1)

where  $\nu_h = \operatorname{pr}(z_i = h)$ , and  $\psi_h^{(j)} \in \mathcal{S}_{d_j-1}$ .

▶ (1) is a form of non-negative PARAFAC decomposition



#### Infinite Mixture of Product Multinomials

- Although any multivariate categorical data distribution can be expressed as above for for a sufficiently large k, a number of practical issues arise in the implementation.
- Firstly, it is not straightforward to obtain a well-justified approach for estimation of k.
- ▶ Because the data are often very sparse with most of the cells in the  $d_1 \cdots d_p$  contingency table being empty, a unique maximum likelihood estimate of the parameters often does not exist even when a modest k is chosen.
- ► Such problems may lead one to choose a very small *k*, which may be insufficient
- ► Follow a Bayesian nonparametric approach

#### Infinite Mixture of Product Multinomials

▶ We propose to induce a prior,  $\pi \sim P$  through the following specification

$$\begin{array}{rcl} \pi & = & \displaystyle\sum_{h=1}^{\infty} \nu_h \Psi_h, \quad \Psi_h = \psi_h^{(1)} \otimes \cdots \otimes \psi_h^{(p)} \\ \\ \psi_h^{(j)} & \sim & P_{0j}, \text{ independently for } j=1,\ldots,p; \, h=1,\ldots,\infty \\ \\ \nu & \sim & Q. \end{array}$$

- ▶  $P_{0i}$  is a probability measure on  $S_{d_i-1}$ .
- Q is a probability measure on the countably infinite probability simplex,  $S_{\infty}$ .

## Choice of prior for $P_{0j}$ and Q

 $ightharpoonup P_{0j}$  may correspond to a Dirichlet measure with

$$\psi_h^{(j)} \sim \mathsf{Diri}(a_{j1}, \dots, a_{jc_j})$$

▶ Q corresponds to a Dirichlet process  $\sum_h \pi_h \delta_h$  where  $\pi_h = V_h \prod_{I < h} (1 - V_I)$  with  $V_h \sim \text{beta}(1, \alpha)$  independently for  $h = 1, \ldots, \infty$  where  $\alpha > 0$  is a precision parameter characterizing Q.

## Testing and Inferences

- ▶ Interest to test for independence of the elements of  $x_i = (x_{i1}, \dots, x_{ip})'$ .
- ▶ In the motif application, considerable debate on the appropriateness of the independence assumption
- Under our proposed formulation, the null hypothesis of independence is nested within a nonparametric alternative that accommodates a sequence of models of increasing complexity including the saturated model.
- ▶ In particular, the independence model corresponds to  $H_0: \nu_1 = 1$ .
- ▶ As noted in Berger and Sellke (1987), interval null hypotheses are often preferred to point null hypotheses.

## Testing and Inferences

Motivated by this reasoning and by computational considerations, we focus instead on the interval null

$$H0: \nu_* > 1 - \epsilon, \quad \nu_* = \max\{\nu_h, h = 1, \dots, k_*\}$$

• Fix  $\epsilon > 0$  (usually 0.05)

#### Measures of association for nominal data

- ▶ Infer dependence structure from pairwise dependencies between  $y_{ij}$  and  $y_{ij'}$  for  $j \neq j' \in \{1, ..., p\}$
- ▶ Pairwise Cramer's V association matrix  $\rho = (\rho_{ii'})$

$$\rho_{jj'}^2 = \frac{1}{\min\{d_j, d_{j'}\} - 1} \sum_{c_j = 1}^{d_j} \sum_{c_{j'} = 1}^{d_{j'}} \frac{(\pi_{c_j c_{j'}} - \bar{\psi}_{c_j}^{(j)} \bar{\psi}_{c_{j'}}^{(j')})^2}{\bar{\psi}_{c_j}^{(j)} \bar{\psi}_{c_{j'}}^{(j')}}$$

with 
$$\bar{\psi}_I^{(j)} = \sum_{h=1}^{k^*} \nu_h \psi_{hI}^{(j)}$$
.

▶  $\rho_{jj'}$  ranges from 0 to 1, with  $\rho_{jj'} \approx 0$  when  $x_{ij}$  and  $x_{ij'}$  are independent.



#### Measures of association for nominal data

- ▶ Posterior distribution of  $\rho_{jj'}$  for all (j, j') pairs based on the output of the Gibbs sampler.
- ▶ Construct recommend reporting a  $p \times p$  association matrix, with the elements corresponding to posterior means for each  $\rho_{jj'}$ .
- In addition, we can calculate posterior probabilities and Bayes factors for local null hypotheses,  $H_{1,jj'}: \rho_{jj'} > \epsilon$  from the Gibbs sampler output.

#### Simulation studies

- ▶ Simulated data consisted of A, C, G, T nucleotides  $(d_i = d = 4)$  at p = 20 positions for n = 100 sequences.
- ▶ 2 settings: generate the nucleotides (1) independently, and (2) assuming dependence in locations 2, 4, 12, and 14.

#### Simulation studies



Figure 1. Histograms of estimated posterior probabilities of  $H_1$  in each of the 100 simulations under (a) case 1 (no positional dependence— $H_0$  is true) and (b) case 2 (positional dependence— $H_1$  is true).

#### Simulation studies



Figure 2. Results of simulation case 2—percentages of simulations for which (a)  $Pr(H_{1jj'}|\mathbf{X}) > 0.95$ , and (b) the Xie and Geng (2008) method estimated an association between positions j, j'. The true model has dependence in positions 2, 4, 12, and 14.