February 14, 2013

Hypothesis testing

Power of a test

1. Assuming standard deviation is known. Calculate power based on one-sample z test. A new drug is proposed for people with high intraocular pressure (IOP), to prevent the development of glaucoma. A pilot study is conducted with the drug among 10 patients. Their mean IOP decreases by 5 mm Hg with a sd of 10 mm Hg after 1 month of using the drug. The investigator propose to study 100 participants in the main study. Is this a sufficient sample size for the study?

 $H_0: \mu = \mu_0$ vs. $H_1: \mu < \mu_0$ When the distribution is normal and variance is known. H_0 is rejected if $Z < Z_{\alpha}$ and H_0 is accepted otherwise. The best test does not depend on the alternative mean μ_1 What is the difference?

Power = 1 - P(type II error) = P(reject $H_0 \mid H_0$ false) = $P(\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}} < z_\alpha \mid \mu = \mu_1)$ Under $H_1, \bar{X} \sim N(\mu_1, \sigma^2/n)$. Hence, Power = $P(\frac{\bar{X}-\mu_1}{\sigma/\sqrt{n}} < (\mu_0 + Z_\alpha \sigma/\sqrt{n} - \mu_1)/(\sigma/\sqrt{n})) = P(Z < Z_\alpha + \frac{(\mu_0 - \mu_1)\sigma}{\sqrt{n}}).$

2. Compute the power of the test for the birthweight data with an alternative mean of 115 oz and $\alpha = 0.05$, assuming the true standard deviation = 24 oz. We have $\mu_0 = 120oz, \ \mu_1 = 115oz, \ \alpha = 0.05, \ \sigma = 24, n = 100.$ Power = $P(Z < Z_{\alpha} + \frac{(\mu_0 - \mu_1)\sqrt{n}}{\sigma})$ P(Z < -1.645 + 5(10)/24) = P(Z < 0.438) = 0.669.

Alternative is greater than Null

1. The best test is H_0 rejected if $Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} > Z_{1-\alpha}$ and H_0 is accepted if $Z \leq Z_{1-\alpha}$. The power of the test is given by

$$P(\bar{X} > \mu_0 + Z_{1-\alpha}\sigma/\sqrt{n} \mid \mu = \mu_1) = 1 - P(Z < Z_{1-\alpha} + \frac{(\mu_0 - \mu_1)\sqrt{n}}{\sigma})$$
$$= P(Z < Z_\alpha + \frac{(\mu_1 - \mu_0)\sqrt{n}}{\sigma})$$

2. Using a 5% level of significance and a sample of size 10, compute the power of the test for the cholesterol data with an alternative mean of 190 mg/dL, a null mean of

Figure 7.5 Illustration of power for the one-sample test for the mean of a normal distribution with known variance ($\mu_1 < \mu_0$)

175 mg/dL, and a standard deviation of 50 mg/dL. We have $\mu_0 = 175$, $\mu_1 = 190$, $\alpha = 0.05$, $\sigma = 50$, n = 10.

Power = $P(Z < Z_{\alpha} + \frac{(\mu_0 - \mu_1)\sqrt{n}}{\sigma})$ = $P(Z < -1.645 + 15\sqrt{10}/50)) = P(Z < -0.696) = 0.243$

3. Hence power of a one sample Z test for the mean of a normal distribution with known variance (one-sided alternative) for the hypothesis

$$P(Z < Z_{\alpha} + \frac{(|\mu_0 - \mu_1|)\sqrt{n}}{\sigma})$$

- 4. Factors affecting the power:
 - (a) If the significance level is made small (α decreases), Z_{α} decreases and hence the power decreases.
 - (b) If the alternative mean is shifted further away from the null mean $(|\mu_0 \mu_1|$ increases), then the power increases.
 - (c) If the standard deviation of the distribution of individual observation increases (σ increases), then the power decreases.
 - (d) If the sample size increases, then the power increases.
- 5. Power curve for the birthweight data:

6. Two sided alternative: Reject if $\frac{(\bar{X}-\mu_0)}{\sigma/\sqrt{n}} > Z_{1-\alpha/2}$ or $\frac{(\bar{X}-\mu_0)}{\sigma/\sqrt{n}} < Z_{\alpha/2}$. Hence power

$$\Phi(-Z_{1-\alpha/2} + \frac{(\mu_0 - \mu_1)\sqrt{n}}{\sigma}) + \Phi(-Z_{1-\alpha/2} + \frac{(\mu_1 - \mu_0)\sqrt{n}}{\sigma})$$

and is approximated by

$$\Phi(-Z_{1-\alpha/2} + \frac{|\mu_0 - \mu_1|\sqrt{n}}{\sigma})$$

1 Sample size determination

1. Sample size is important for a study design. Significance level is normally specified. If alternative hypothesis is true, what is the probability of rejecting null? This is the power of the test, typical values are 80% or above. Given a significance level α , and that the true alternative mean is expected to be μ_1 , what sample size is needed to be able to detect a significance difference with probability $1 - \beta$?

2. For one sided alternative: Power = $P(Z < Z_{\alpha} + \frac{(|\mu_0 - \mu_1|)\sqrt{n}}{\sigma}) = 1 - \beta$. Solve *n* in terms of $\alpha, \beta, |\mu_0 - \mu_1|$ and σ .

$$n = \frac{(Z_{1-\beta} + Z_{1-\alpha})^2 \sigma^2}{(\mu_0 - \mu_1)^2}$$

3. Consider the birthweight data. Suppose that $\mu_0 = 120$ oz, $\mu_1 = 115oz$, $\alpha = 0.05$, $\sigma = 24, 1-\beta = .80$, and we use a one-sided test. C ompute the appropriate sample size needed to conduct the test. $n = [242(Z_{0.8} + Z_{0.95})2]/25 = 23.04(.84 + 1.645)2 = 142.3$

4. For 2 sided alternative:

$$n = \frac{(Z_{1-\beta} + Z_{1-\alpha/2})^2 \sigma^2}{(\mu_0 - \mu_1)^2}$$

Factors affecting the sample size:

- (a) The sample size increases as σ^2 increases
- (b) The sample size increases as the significance level is made smaller (α decreases)
- (c) The sample size increases as the required power increases $(1 \beta \text{ increases})s$
- (d) The sample size decreases as the absolute value of the distance between the null and the alternative means $|\mu_0 \mu_1|$ increases.
- 5. Consider a study of the effect of a calcium-channel-blocking agent on heart rate for patients with unstable angina. Suppose we want at least 80% power for detecting a significant difference if the effect of the drug is to change mean heart rate by 5 beats per minute over 48 hours in either direction and ? = 10 beats per minute. How many patients should be enrolled in such a study?

We assume $\alpha = .05$ and $\sigma = 10$ beats. We use a two-sided test. $n = \frac{(Z_{1-\beta}+Z_{1-\alpha/2})^2 \sigma^2}{(\mu_0-\mu_1)^2} = [100(Z_{0.8}+z_{0.975})2]/25 = 31.36$. If we know the direction of the effect of the drug, $n = \frac{(Z_{1-\beta}+Z_{1-\alpha/2})^2 \sigma^2}{(\mu_0-\mu_1)^2} = [100(Z_{0.8}+z_{0.95})2]/25 = 24.7.$

Sample size calculation based on confidence interval width

We may want to estimate the effect with a given degree of precision. Suppose it is well known that propranolol lowers heart rate over 48 hours when given to patients with angina at standard dosage levels. A new study is proposed using a higher dose of propranolol than the standard one. Investigators are interested in estimating the drop in heart rate with high precision.

The $100(1-\alpha)\%$ CI for μ = true decline in the heart rate is $\bar{x} \pm t_{n-1,1-\alpha/2}s/\sqrt{n}$. The width of this CI is $2t_{n-1,1-\alpha/2}S/\sqrt{n}$. If we want the interval < L

$$2t_{n-1,1-\alpha/2}s/\sqrt{n} = L$$
, or $n = 4t_{n-1,1-\alpha/2}^2S^2/L^2$

Relationship between hypothesis testing and confidence intervals

Suppose we are testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. H_0 is rejected with a two-sided level α test if and only if the two-sided $100(1 - \alpha)\%$ confidence interval for μ does not contain μ_0 . H_0 is accepted with two-sided level α test if and only if the two-sided $100(1 - \alpha)\%$ confidence interval for μ does contain μ_0 .