

Ex. 10.4

- A hypothesis: an important factor for breast cancer is age at first birth.
- An international study was set up to test the hypothesis.
 - Breast cancer cases were identified among women in selected hospitals in the United States, Greece, Yugoslavia, Brazil, and Japan.
 - Controls were chosen from women of comparable age who were in the hospital at the same time as the cases, but who did not have breast cancer.
 - All women were asked about their age at first birth.
 - The set of women with at least one birth was arbitrarily divided into two categories:
 - Women whose age at first birth ≤ 29
 - Women whose age at first birth ≥ 30
- Results among women with at least one birth
 - 683 out of 3220 (21.2%) women with breast cancer had an age at first birth \geq 30
 - 1498 out of 10,245 (14.6%) women without breast cancer had an age at first birth \geq 30
- How can we assess whether this difference is significant?

Two-Sample Test for Binomial Proportions

- p_1 = the probability that age at first birth is ≥ 30 in case women.
- p_2 = the probability that age at first birth is \geq 30 in control women.
- Whether or not the underlying probability of having an age at first birth of ≥ 30 is different in the two groups.
- $H_0: p_1 = p_2 = p \text{ versus } H_1: p_1 \neq p_2$

Normal-Theory Method

- Base the significance test on the difference between the sample proportions $\hat{p}_1 \hat{p}_2$
- Assume samples are large enough

 $\hat{p}_1 - \hat{p}_2$ is normally distributed

$$\frac{pq}{n_1} + \frac{pq}{n_2} = pq \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \qquad z = \left(\hat{p}_1 - \hat{p}_2 \right) / \sqrt{pq(1/n_1 + 1/n_2)} \stackrel{?}{\sim} N(0,1)$$

$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}$$

To better accommodate the normal approximation to the binomial

$$|\hat{p}_1 - \hat{p}_2| - \left(\frac{1}{2n_1} + \frac{1}{2n_2}\right)$$

Two-Sample Test for Binomial Proportions (Normal-Theory Test) To test the hypothesis H_0 : $p_1 = p_2$ versus H_1 : $p_1 \neq p_2$, where the proportions are obtained from two independent samples, use the following procedure:

(1) Compute the test statistic

$$z = \frac{\left|\hat{p}_{1} - \hat{p}_{2}\right| - \left(\frac{1}{2n_{1}} + \frac{1}{2n_{2}}\right)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

where
$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}, \ \hat{q} = 1 - \hat{p}$$

and x_1 , x_2 are the number of events in the first and second samples, respectively.

(2) For a two-sided level α test,

if
$$z > z_{1-\alpha/2}$$

then reject H_0 ;

if
$$z \le z_{1-\alpha/2}$$

then accept H_0 .

(3) The approximate p-value for this test is given by

$$p=2\big[1-\Phi(z)\big]$$

(4) Use this test only when the normal approximation to the binomial distribution is valid for each of the two samples—that is, when n₁p̂q̂ ≥ 5 and n₂p̂q̂ ≥ 5.

$$z = \frac{|\hat{p}_1 - \hat{p}_2| - \left(\frac{1}{2n_1} + \frac{1}{2n_2}\right)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where
$$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}, \ \hat{q} = 1 - \hat{p}$$

Sample proportion of case women whose age at first birth was ≥ 30 is $p_1 = 683/3220 = .212$

For control women

$$p_2 = 1498/10, 245 = .146$$

$$p = (683 + 1498)/(3220 + 10, 245) = .162$$

$$q = 1 - .162 = .838$$

$$n_1 pq = 3220(.162)(.838) = 437 \ge 5$$

$$n_2 pq = 10, 245(.162)(.838) = 1391 \ge 5$$

The test statistic is given by

$$z = \left\{ |.212 - .146| - \left[\frac{1}{2(3220)} + \frac{1}{2(10,245)} \right] \right\} / \sqrt{.162(.838) \left(\frac{1}{3220} + \frac{1}{10,245} \right)}$$

$$= .0657/.00744$$

$$= 8.8$$

The p-value = $2 \times [1 - \Phi(8.8)] < .001$, and the results are highly significant.

Contingency-Table Method

• The data in the previous example can be represented as a 2×2 contingency table.

	Age at	first birth		
Status	≥30	≤29	Total	
Case	683	2537	3220	
Control	1498	8747	10,245	
Total	2181	11,284	13,465	

Source: Reprinted with permission of WHO Bulletin, 43, 209-221, 1970.

- Row margins
- Column margins
- Grand total

Significance Testing Using Contingency-Table Approach

- Observed contingency table
- Expected table

General contingency table for the international-study data in Example 10.4 if (1) of n_1 women in the case group, x_1 are exposed and (2) of n_2 women in the control group, x_2 are exposed (that is, having an age at first birth \geq 30)

	Ag	e at first birth	
Case-control status	≥ 30	≤ 29	Total
Case	<i>X</i> ₁	$n_1 - x_1$	n_1
Control	X2	$n_2 - x_2$	n_2
Total	$x_1 + x_2$	$n_1 + n_2 - (x_1 + x_2)$	$n_1 + n_2$

Computation of Expected Values for Contingency Tables

• Under null hypothesis, the expected number of units in the (1, 1) cell is

$$n_1\hat{p} = n_1(x_1 + x_2)/(n_1 + n_2)$$

• For the (2, 1) cell, it is

$$n_2\hat{p} = n_2(x_1 + x_2)/(n_1 + n_2)$$

Computation of Expected Values for 2×2 Contingency Tables The expected number of units in the (i, j) cell, which is usually denoted by E_{ij} , is the product of the ith row margin multiplied by the jth column margin, divided by the grand total.

$$E_{11}$$
 = expected number of units in the (1, 1) cell = $3220(2181)/13,465 = 521.6$

$$E_{12}$$
 = expected number of units in the (1, 2) cell = $3220(11,284)/13,465 = 2698.4$

$$E_{21}$$
 = expected number of units in the (2, 1) cell = 10,245(2181)/13,465 = 1659.4

$$E_{22}$$
 = expected number of units in the (2, 2) cell = 10,245(11,284)/13,465 = 8585.6

Expected table for the breast-cancer data in Example 10.4

	Age at	first birth	
Case-control status	≥30	≤29	Total
Case	521.6	2698.4	3220
Control	1659.4	8585.6	10,245
Total	2181	11,284	13,465

Yates-Corrected Chi-Square Test for 2×2 Contingency Table

The best test is base on statistic $(O - E)^2 / E$, where O and E are the observed and expected number of units, respectively, in a particular cell.

Yates-Corrected Chi-Square Test for a 2 × 2 Contingency Table Suppose we wish to test the hypothesis H_0 : $p_1 = p_2$ versus H_1 : $p_1 \neq p_2$ using a contingency-table approach, where O_{ij} represents the observed number of units in the (i, j) cell and E_{ij} represents the expected number of units in the (i, j) cell.

(1) Compute the test statistic

$$X^{2} = (|O_{11} - E_{11}| - .5)^{2} / E_{11} + (|O_{12} - E_{12}| - .5)^{2} / E_{12} + (|O_{21} - E_{21}| - .5)^{2} / E_{21} + (|O_{22} - E_{22}| - .5)^{2} / E_{22}$$

which under H_0 approximately follows a χ_1^2 distribution.

- (2) For a level α test, reject H_0 if $X^2 > \chi^2_{1,1-\alpha}$ and accept H_0 if $X^2 \le \chi^2_{1,1-\alpha}$.
- (3) The approximate p-value is given by the area to the right of X² under a χ² distribution.
- (4) Use this test only if none of the four expected values is less than 5.

$$\begin{split} X^2 &= \left(\left| O_{11} - E_{11} \right| - .5 \right)^2 \Big/ E_{11} + \left(\left| O_{12} - E_{12} \right| - .5 \right)^2 \Big/ E_{12} \\ &+ \left(\left| O_{21} - E_{21} \right| - .5 \right)^2 \Big/ E_{21} + \left(\left| O_{22} - E_{22} \right| - .5 \right)^2 \Big/ E_{22} \end{split}$$

Assess the breast cancer data in Example 10.4 using contingency-table approach

$$X^{2} = \frac{(|683 - 521.6| - .5)^{2}}{521.6} + \frac{(|2537 - 2698.4| - .5)^{2}}{2698.4} + \frac{(|1498 - 1659.4| - .5)^{2}}{1659.4} + \frac{(|8747 - 8585.6| - .5)^{2}}{8585.6} = 77.89 \sim \chi_{1}^{2} \text{ under } H_{0}$$
Because $\chi_{1,999}^{2} = 10.83 < 77.89 = X^{2}$

$$p < 1 - .999 = .001$$

Short Computational Form for the Yates-Corrected Chi-Square Test for 2×2 Contingency Tables Suppose we have the 2×2 contingency table in Table 10.7. The X^2 test statistic in Equation 10.5 can be written

$$X^{2} = n \left(\left| ad - bc \right| - \frac{n}{2} \right)^{2} / \left[(a+b)(c+d)(a+c)(b+d) \right]$$

Thus the test statistic X^2 depends only on (1) the grand total n, (2) the row and column margins a + b, c + d, a + c, b + d, and (3) the magnitude of the quantity ad - bc. To compute X^2 ,

(1) Compute

$$\left(\left|ad-bc\right|-\frac{n}{2}\right)^2$$

Start with the first column margin, and proceed counterclockwise.

- (2) Divide by each of the two column margins.
- (3) Multiply by the grand total.
- (4) Divide by each of the two row margins.

General contingency table

a + b	Ь	a
c + d	d	С
n = a + b + c + c	b + d	a + c

Two-Sample Test for Binomial Proportions for Matched-Pair Data (McNemar's Test)

Ex 10.21

- Comparing two different chemotherapy treatments for breast cancer, A and B.
 - The two groups should be as comparable as possible on other prognostic factors.
- A matched study
 - The patients are assigned to pairs matched on age and clinical conditions
 - A random member of each matched pair gets treatment A and the other gets treatment B.
 - The patients are followed for 5 years, with survival as the outcome variable.

A 2 \times 2 contingency table comparing treatments A and B for breast cancer based on 1242 patients

	Outo		
Treatment	Survive for 5 years	Die within 5 years	Total
A	526	95	621
3	515	106	621
Total	1041	201	1242

- Yates-corrected chi-square statistic is 0.59, which is not significant.
- Using this test assumes that the samples are independent.

A 2 \times 2 contingency table with the matched pair as the sampling unit based on 621 matched pairs

	Outcome of treatment B patient		
Outcome of treatment A patient	Survive for 5 years	Die within 5 years	Total
Survive for 5 years	510	16	526
Die within 5 years	5	90	95
Total	515	106	621

- Probability that the treatment B member of the pair survived given that the treatment A member of the pair survived = 510/526 = .970
- Probability that the treatment B member of the pair survived given that the treatment A member of the pair died = 5/95 = .053
- Concordant pair
 - A matched pair in which the outcome is the same for each member of the pair.
- Discordant pair
 - A matched pair in which the outcomes differ for the members of the pair.
- Type A discordant pair
 - Treatment A member of the pair has the event and B does not.
- Type B discordant pair
 - Treatment B member of the pair has the event and A does not.

- Let p = probability that a discordant pair is of type A.
- H_0 : p = 1/2 versus H_1 : $p \ne 1/2$.

McNemar's Test for Correlated Proportions-Normal-Theory Test

- (1) Form a 2 x 2 table of matched pairs, where the outcomes for the treatment A members of the matched pairs are listed along the rows and the outcomes for the treatment B members are listed along the columns.
- (2) Count the total number of discordant pairs (n_p) and the number of type A discordant pairs (n_s).
- (3) Compute the test statistic

$$X^2 = \left(\left| n_A - \frac{n_D}{2} \right| - \frac{1}{2} \right)^2 / \left(\frac{n_D}{4} \right)$$

An equivalent version of the test statistic is also given by

$$X^2 = (|n_A - n_B| - 1)^2 / (n_A + n_B)$$

(4) For a two-sided level α test,

if
$$X^2 > \chi^2_{1,1-\alpha}$$

then reject H.;

if
$$X^2 \le \chi^2_{1,1-\alpha}$$

then accept H_0 .

- (5) The exact p-value is given by p-value = $Pr(\chi_1^2 \ge X^2)$.
- (6) Use this test only if $n_D \ge 20$.