
Statistics

April 1, 2014 Debdeep Pati

Modeling Binary outcome

1. Outcome variable can be binary instead of normally distributed. In biostatistics or
epidemiology, we are often interested in the effect of risk factors (x) to a disease (y).

2. We are interested in the relationship between risk factors x and r.
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Problems with Linear Regression models

1. The r-x relationship may not be linear

2. Proportions (including risks) must lie between 0 and 1.

3. When observed proportions scan most of this allowable range, the pattern in the
scatterplot is generally nonlinear.

4. The tendency toward “squashing up” as proportions approach the asymptotes at 0
or 1.

5. Predicted values of the risk may be outside the valid range:

6. Fitted linear regression model for r regressed on x is given as r = a+ bx.

7. This can lead to predictions of risks that are negative or are greater than unity, and
thus impossible.

8. Fitting a linear regression line to the data in Table 4 gives r = −25.394+0.645×age.

9. If we use this model to predict the risk of death for someone aged 39, the prediction
gives r = −25.394 + 0.645× 39 = −0.239, a negative risk!

10. Similar problems are found with confidence limits for predicted risks within the range
of the observed data.

11. The error distribution is not normal. In simple linear regression, we fit the model
r = α+ βx+ ε, where ε arises from a standard normal distribution.

12. r models proportions: proportions are not likely to have a normal distribution; they
are likely to be binomial.

13. The inferences drawn from the linear regression would be inaccurate

Logistic regression function
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1. The logistic function has an S shape

2. solved the non-linearity problem

3. There is an asymptote at y = 0 and y = 1

4. solved the “out of bound” problem

5. When using logistic function, we assume the data have binomial rather than normal.

6. Solved the assumption of normal error problem

7. The alternative form

log

(
r̂

1− r̂

)
= b0 + b1x

8. The left-hand side is called the logit (log of the odds of disease)

9. Logistic regression model postulates a linear relationship between the log odds of
disease and the risk factor.

10. The right-hand side is called the linear predictor.5
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Interpretation of logistic regression coefficients

1. Smoking and cardiovascular disease: smoker and disease: 31, smoker and no disease:
1386, nonsmoker and disease: 15, nonsmoker and no disease: 1883.

2.

3. logit = −4.8326 + 1.0324x, x = 1 for smokers and 0 for nonsmokers.

4. The odds ratio for disease, comparing smokers to nonsmokers is exp[1.0324(1− 0)] =
exp[1.0324] = 2.808

5. Observe that

log(ψ̂) = log( ˆodds1/ ˆodds0) = log( ˆodds1)− log( ˆodds0)

= ˆlogit1 − ˆlogit2

= b0 + b1x1 − (b0 + b1x0)

= b1(x1 − x0)

Hence ψ̂ = exp{b1(x1 − x0)}.

6. The estimated standard error of the log odds ratio is 0.3165. An approximate 95%
confidence limit for the odds ratio is exp[1.0324± 1.96× 0.3165]→ (1.510, 5.221)

7. Since we know the log odds, we can find odds directly from the fitted logit function.

8. The risk of the disease for smoker is r = [1 + exp(4.8326− 1.0324× 1]−1 = 0.0219 =
[1 + exp(−logit)]−1 implying logit = -3.8002

9. The risk of the disease for nonsmoker is r = [1 + exp(4.8326)]−1 = 0.0079

10. The relative risk for smokers to nonsmokers: 0.0219/.0079 = 2.77
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