April 1, 2014

Modeling Binary outcome

1. Outcome variable can be binary instead of normally distributed. In biostatistics or epidemiology, we are often interested in the effect of risk factors (x) to a disease (y).

Risk factor value	Disease?	
x_1	yes	
x_2	no	Table 1 Raw data on risk factor values
		and disease outcome
		and disease outcome
x _n	no	:

2

Table 2. Grouped data on risk factor values and disease outcome.

Risk factor value	Number with disease	Total number	Proportion with disease	
x1	e_1	n_1	r_1	
x_2	e_2	n_2	r_2	
		•	•	
	•		•	
			•	
x_{ℓ}	e_ℓ	n_ℓ	r_{ℓ}	

2. We are interested in the relationship between risk factors x and r.

	Occur	oatior	nal social class (rank)	Number With H. pylori	Total	Proportion with <i>H. pylori</i>
•	ī	Nonr	nanual, professional (1)	10	38	0.26
	ĪI	Nonr	nanual, intermediate (2)	40	86	0.46
	IIIn	In Nonmanual, skilled (3)		36	57	0.63
	IIIm	IIIm Manual, skilled (4)		226	300	0.75
	IV Manual, partially skilled (5)		83	108	0.77	
	V	Man	ual, unskilled (6)	60	73	0.82
	Proportion with H. Pylori	0.75 - 0.65 - 0.55 - 0.45 - 0.35 - 0.25 -	• • I II IIIn III Social class	m IV V	Fiş	gure 1.

Table 3. Prevalent H. pylori and occupational social class amongst men in north Glasgow.

Age	Num	nber	Percentage
(years)	Dying	Total	dying
40	1	251	0.4
41	12	317	3.8
42	13	309	4.2
43	6	285	2.1
44	10	236	4.2
45	8	254	3.1
46	10	277	3.6
47	12	278	4.3
48	10	285	3.5
49	14	276	5.1
50	15	274	5.5
51	14	296	4.7
52	19	305	6.2
53	36	341	10.6
54	26	305	8.5
55	21	276	7.6
56	28	325	8.6
57	41	302	13.6
58	38	260	14.6
59	49	302	16.2

Table 4. Death by age at baseline; SHHS men.

Problems with Linear Regression models

- 1. The r-x relationship may not be linear
- 2. Proportions (including risks) must lie between 0 and 1.
- 3. When observed proportions scan most of this allowable range, the pattern in the scatterplot is generally nonlinear.
- 4. The tendency toward "squashing up" as proportions approach the asymptotes at 0 or 1.
- 5. Predicted values of the risk may be outside the valid range:
- 6. Fitted linear regression model for r regressed on x is given as r = a + bx.
- 7. This can lead to predictions of risks that are negative or are greater than unity, and thus impossible.
- 8. Fitting a linear regression line to the data in Table 4 gives $r = -25.394 + 0.645 \times age$.
- 9. If we use this model to predict the risk of death for someone aged 39, the prediction gives $r = -25.394 + 0.645 \times 39 = -0.239$, a negative risk!
- 10. Similar problems are found with confidence limits for predicted risks within the range of the observed data.
- 11. The error distribution is not normal. In simple linear regression, we fit the model $r = \alpha + \beta x + \epsilon$, where ϵ arises from a standard normal distribution.
- 12. r models proportions: proportions are not likely to have a normal distribution; they are likely to be binomial.
- 13. The inferences drawn from the linear regression would be inaccurate

Logistic regression function

- 1. The logistic function has an S shape
- 2. solved the non-linearity problem
- 3. There is an asymptote at y = 0 and y = 1
- 4. solved the "out of bound" problem
- 5. When using logistic function, we assume the data have binomial rather than normal.
- 6. Solved the assumption of normal error problem
- 7. The alternative form

$$\log\left(\frac{\hat{r}}{1-\hat{r}}\right) = b_0 + b_1 x$$

- 8. The left-hand side is called the logit (log of the odds of disease)
- 9. Logistic regression model postulates a linear relationship between the log odds of disease and the risk factor.
- 10. The right-hand side is called the linear predictor.

Odds Ratio

If the probability of a success = p, then the odds in favor of success = p/(1 - p).

Let p_1 , p_2 be the underlying probability of success for two groups. The odds ratio (*OR*) is defined as

$$OR = \frac{p_1/q_1}{p_2/q_2} = \frac{p_1q_2}{p_2q_1}$$
 and is estimated by $\hat{OR} = \frac{\hat{p}_1\hat{q}_2}{\hat{p}_2\hat{q}_1}$

Equivalently, if the four cells of the 2×2 contingency table are labeled by *a*, *b*, *c*, *d*, as they are in Table 13.1, then

$$\widehat{OR} = \frac{\left[a/(a+b)\right] \times \left[d/(c+d)\right]}{\left[c/(c+d)\right] \times \left[b/(a+b)\right]} = \frac{ad}{bc}$$

The **disease-odds ratio** is the odds in favor of disease for the exposed group divided by the odds in favor of disease for the unexposed group.

The **exposure-odds ratio** is the odds in favor of being exposed for diseased subjects divided by the odds in favor of being exposed for nondiseased subjects.

Interpretation of logistic regression coefficients

1. Smoking and cardiovascular disease: smoker and disease: 31, smoker and no disease: 1386, nonsmoker and disease: 15, nonsmoker and no disease: 1883.

Parameter	Estimate	Standard error
INTERCEPT	-4.8326	0.2592
SMOKING	1.0324	0.3165

- 3. logit = -4.8326 + 1.0324x, x = 1 for smokers and 0 for nonsmokers.
- 4. The odds ratio for disease, comparing smokers to nonsmokers is $\exp[1.0324(1-0)] = exp[1.0324] = 2.808$
- 5. Observe that

$$log(\hat{\psi}) = log(o\hat{d}s_1/o\hat{d}s_0) = log(o\hat{d}s_1) - log(o\hat{d}s_0)$$

= $l\hat{ogit}_1 - l\hat{ogit}_2$
= $b_0 + b_1x_1 - (b_0 + b_1x_0)$
= $b_1(x_1 - x_0)$

Hence $\hat{\psi} = \exp\{b_1(x_1 - x_0)\}.$

2.

- 6. The estimated standard error of the log odds ratio is 0.3165. An approximate 95% confidence limit for the odds ratio is $\exp[1.0324 \pm 1.96 \times 0.3165] \rightarrow (1.510, 5.221)$
- 7. Since we know the log odds, we can find odds directly from the fitted logit function.
- 8. The risk of the disease for smoker is $r = [1 + exp(4.8326 1.0324 \times 1]^{-1} = 0.0219 = [1 + exp(-logit)]^{-1}$ implying logit = -3.8002
- 9. The risk of the disease for nonsmoker is $r = [1 + \exp(4.8326)]^{-1} = 0.0079$
- 10. The relative risk for smokers to nonsmokers: 0.0219/.0079 = 2.77