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Modeling Binary outcome

Test of hypothesis

1.

2.

Is the effect observed statistically significant or attributable to chance?

Three types of hypothesis: a) tests of goodness of fit of the overall model. b) tests of
effect of any one risk factor contained within the model. c¢) tests of the linear effect
of ordered categorical risk factors.

Deviance is calculated from the likelihood, which is a measure of how likely a partic-
ular model is, given the observed data.

. A measure of the difference between the postulated model and the model that, by

definition, is a perfect fit to the data (called full or saturated model).

. Deviance is given by

D = —2{log L —log Ly}

The deviance of the model can be used to test for goodness of fit of the model to
the data. The model deviance is compared to chi-square with the model deviance df.
The df for a model deviance is calculated as “df = number of data items - number
of independent parameters in the fitted model”.

Each of the data items corresponds to a distinct definition of n (denominator for the
calculation of risk).

Number of independent parameters is 1 for the intercept term, 1 for quantitative
variable and [ — 1 for a categorical variable with [ levels.

In the case of lack of fit, Further explanatory variables may be needed. We may have
inadequately modeled the effect of the current variables. Transformations might
be needed, important interactions might be missing, Outliers may be in the data.
Assumption of binomial variation may be incorrect. It is much more meaningful to
test for specific effects.



Effect of a Risk factor

Model nesting: Model A is said to be nested within model B if model B contains all the
variables of model A plus at least one other. Constant is thought of as a variable.

Table 1: default

Model A Model B
constant constant + social class
constant + SBP constant + SBP + cholesterol
constant + age + constant + age + cholesterol+
cholesterol + BMO + smoking | BMO + SBP + smoking+ activity in leisure

When model A is nested within model B, we can test the hypothesis that the extra terms
in B have no effect by calculating the difference between the deviance of models A and B,
denoted AD.

Confounding

1. Adjustment for confounding variables is achieved through logistic modeling by fitting
the confounder with and without the risk factor.

2. Comparison of odds ratios from the models with the risk factor alone and with the

confounder added indicates the effect of the confounder.

Interaction

1. Interaction is dealt with by introducing one or more terms into the logistic regression
model.

2. Between two categorical variables, Between a quantitative and a categorical variable,
Between two quantitative variables.

3. Whenever an interaction turn out to be significant, the main effect of the constituent
terms are likely to be misleading.



» Ex. Considering the example with the following data

Table 14. Ratio of coronary heart disease (CHD) events to total
number by systolic blood pressure (SBP) and cholesterol.

SBP - Serum total cholesterol (mmol/l)

(mmHg) =541 542-6.01 6.02-656 6.57-7.31 =>7.31
=118 1/190 0/183 4/178 81567 41132
119-127  2/203 21756 6/167 10/166 11/137
128-136 5/173 9176 9/181 BI167 11/164
137-148 5/139 311566 10/154 13/174 16/174
>148 5/123 8123 121144 13/179 23/180

» Four models may be fitted
1. logit=5,
2. logit = b, + 5= + bPx® + b®x® + p2(® 4 pO,©
8. logit = b, + b % + bPx? + 6P + b{x() + pO
4. Togit = b, + 5D + bP2® + bPx® 4 b2 4 pO2O)

+ 504D + bDxP 4 pOx® 4 pO2 D 4 pOL®



« Analysis of deviance table

Model D d.f.
1 Constant 94.58 24
2 Constant + SBP 56.73 20
3 Constant + cholesterol 49.48 20
4 Constant + SBP + cholesterol 18.86 16

Note: D = deviance.

* Compare models 1 and 2 to assess the significance of SBP.
* Models 1 and 3 for cholesterol

* Models 1 and 4 for SBP and cholesterol together

* Models 3 and 4 for SBP over and above cholesterol

* Models 2 and 4 for cholesterol over and above SBP.

Confounding and Interaction

We may be concerned with only two variables, such as a risk factor and disease status. If
the third factor can explain (at least partially) the relationship of the two variables, then
confounding is present. e.g. Relationship between the number of children and probability
of breast cancer may be explained by the ages of the mothers. If the third factor modifies
the relationship between risk factor and the disease, then interaction is present. e.g.
Relationship between salt consumption and stroke is quite different for men and women.
Then gender interacts with salt consumption in determining the risk of a stroke.

Definition of a confounder

Confounder (a confounding variable) is an an extraneous factor that wholly or partially
accounts for the observed effect of the risk factor on disease status. There are two scenarios
for effects.

1. an apparent relationship: the confounder is causing the relationship to appear.

2. an apparent lack of relationship: the confounder is masking a true relationship.



Table 1. Risk factor status by disease status

Risk factor Disease status

status Disease No disease  Risk
Exposed 81 29 0.7364
Not exposed 238 182 0.1333

Relative risk 5.52

Table 2. Risk factor status by disease status by confounder (C) status

Risk factor Confounder absent Confounder present
status Disease No disease Risk Disease No disease Risk
Exposed 1 9 0.1000 80 20 0.8000
Mot exposed 20 180 0.1000 8 2 0.8000
Relative risk 1.00 1.00

Reasons for confounding

1. presence/absence of the confounder and the risk factor tend to go together.

2. C is itself, a risk factor for the disease. RR = ((184(3;0%)// ((182308:9221;20)) = 8.

Example 2

1. The presence of the confounder tends to go with the absence of the risk factor whilst
the absence of the confounder tends to go with the presence of the risk factor.

2. C is, itself, a risk factor with relative risk RR = (1?1533955))/ (813055r5133T55:f5(;5) =2.11.

Example 3

1. Interrelationship between variables in general e.g. Drug taking and heavy drinking

2. Study design: Effect of an active prophylactic drug compared with placebo. Suppose
that the patients selected to receive the active drug by chance turned out to be
predominantly male; patients on the placebo are predominantly female. If the disease



Confounding Example 2

Table 3. Risk factor status by disease status

Risk factor Disease status

status Disease No disease  Risk
Exposed 240 420 0.3636
Not exposed 200 350 0.3636
Relative risk 1.00

Table 4. Risk factor status by discase status by confounder (C) status

Risk factor Confounder absent Confounder present
status Disease No disease Risk Disease No disease Risk
Exposed 135 4156 0.24556 105 5 0.9545
Not exposed 5 45 0.1000 195 306 0.3900
Relative risk 2.45 2.45




Confounding Example 3

Table 5. Housing tenure by CHD outcome after 6 years; SHHS men

CHD?
Housing tenure Yes  No Risk
Rented 86 1821 0.0446
Owner-occupied 77 2400 0.0311

Relative risk 1.43
6 years’ follow-up of men in the Scottish Heart Health Study (SHHS). These data are

for those with no symptoms of coronary heart disease (CHD) at the beginning of the study.
The variable ‘housing tenure’ records whether they rent or own their accommodation.

Table 6. Housing tenure by CHD outcome by cigarette smoking after 6 years.

Nonsmokers Smokers
Housing tenure CHD No CHD Risk CHD NoCHD  Risk
Rented 33 923 (.0345 52 808 0.0547
Owner-occupied 48 1722 0.0271 29 678 0.0410
Relative risk 1.27 1.33 g




is more likely in men then we should expect to find that the drug does not perform
as well as it should because its effect is confounded with that of sex.



Assessing confounding

Assess confounding by estimating the effect of the risk factor with and without allowing
for confounding In the earlier example, the relative risk of renting is 1.43 unadjusted, and
around 1.30 after adjustment for smoking. The effect of confounding can be estimated
as Ec/E, where E is the unadjusted and Ec is the adjusted, estimate. 1.30/1.43 = .91,
adjustment has reduced the relative risk by 9%. This approach depends on the risk measure
used. When odds ratio is used the results can be quite different with when relative risk is
used. For rare disease, odds ratio give similar results (Miettenen, OS and Cook, EF (1981)
Confounding: essence and detection. Am J Epidemiol. 114, 593-603)

Confounding Example 2

Table 3. Risk factor status by disease status

Risk factor Disease status

status Disease No disease Risk
Exposed 240 420 0.3636
Not exposed 200 350 0.3636
Relative risk 1.00

Odds ratio is (240*350)/(200"420) = 1

Table 4. Risk factor status by disease status by confounder (C) status

Risk factor Confounder absent Confounder present
status Disease No disease Risk Disease No disease Risk
Exposed 1356 415 0.2455 105 5 0.9545
Not exposed b 45 0.1000 195 306 0.3900
Relative risk 2.45 2.45

Odds ratios are (135*45)/(5*415) = 2.93 and (105*305)/(195*5) = 32.85



