Modeling Binary outcome

Test of hypothesis

1. Is the effect observed statistically significant or attributable to chance?
2. Three types of hypothesis: a) tests of goodness of fit of the overall model. b) tests of effect of any one risk factor contained within the model. c) tests of the linear effect of ordered categorical risk factors.
3. Deviance is calculated from the likelihood, which is a measure of how likely a particular model is, given the observed data.
4. A measure of the difference between the postulated model and the model that, by definition, is a perfect fit to the data (called full or saturated model).
5. Deviance is given by

$$
D=-2\left\{\log \hat{L}-\log \hat{L}_{F}\right\}
$$

6. The deviance of the model can be used to test for goodness of fit of the model to the data. The model deviance is compared to chi-square with the model deviance df. The df for a model deviance is calculated as "df = number of data items - number of independent parameters in the fitted model".
7. Each of the data items corresponds to a distinct definition of n (denominator for the calculation of risk).
8. Number of independent parameters is 1 for the intercept term, 1 for quantitative variable and $l-1$ for a categorical variable with l levels.
9. In the case of lack of fit, Further explanatory variables may be needed. We may have inadequately modeled the effect of the current variables. Transformations might be needed, important interactions might be missing, Outliers may be in the data. Assumption of binomial variation may be incorrect. It is much more meaningful to test for specific effects.

Effect of a Risk factor

Model nesting: Model A is said to be nested within model B if model B contains all the variables of model A plus at least one other. Constant is thought of as a variable.

Table 1: default

Model A	Model B
constant	constant + social class
constant + SBP	constant + SBP + cholesterol
constant + age +	constant + age + cholesterol +
cholesterol + BMO + smoking	BMO + SBP + smoking + activity in leisure

When model A is nested within model B , we can test the hypothesis that the extra terms in B have no effect by calculating the difference between the deviance of models A and B, denoted ΔD.

Confounding

1. Adjustment for confounding variables is achieved through logistic modeling by fitting the confounder with and without the risk factor.
2. Comparison of odds ratios from the models with the risk factor alone and with the confounder added indicates the effect of the confounder.

Interaction

1. Interaction is dealt with by introducing one or more terms into the logistic regression model.
2. Between two categorical variables, Between a quantitative and a categorical variable, Between two quantitative variables.
3. Whenever an interaction turn out to be significant, the main effect of the constituent terms are likely to be misleading.

- Ex. Considering the example with the following data

Table 14. Ratio of coronary heart disease (CHD) events to total number by systolic blood pressure (SBP) and cholesterol.

SBP (mmHg)	≤ 5.41	$5.42-6.01$	$6.02-6.56$	$6.57-7.31$	>7.31
≤ 118	$1 / 190$	$0 / 183$	$4 / 178$	$8 / 157$	$4 / 132$
$119-127$	$2 / 203$	$2 / 175$	$6 / 167$	$10 / 166$	$11 / 137$
$128-136$	$5 / 173$	$9 / 176$	$9 / 181$	$8 / 167$	$11 / 164$
$137-148$	$5 / 139$	$3 / 156$	$10 / 154$	$13 / 174$	$16 / 174$
>148	$5 / 123$	$8 / 123$	$12 / 144$	$13 / 179$	$23 / 180$

- Four models may be fitted

1. $\log \mathrm{it}=b_{0}$
2. logit $=b_{0}+b_{1}^{(1)} x_{1}^{(1)}+b_{1}^{(2)} x_{1}^{(2)}+b_{1}^{(3)} x_{1}^{(3)}+b_{1}^{(4)} x_{1}^{(4)}+b_{1}^{(5)} x_{1}^{(5)}$
3. logit $=b_{0}+b_{2}^{(1)} x_{2}^{(1)}+b_{2}^{(2)} x_{2}^{(2)}+b_{2}^{(3)} x_{2}^{(3)}+b_{2}^{(4)} x_{2}^{(4)}+b_{2}^{(5)} x_{2}^{(5)}$
4. logit $=b_{0}+b_{1}^{(1)} x_{1}^{(1)}+b_{1}^{(2)} x_{1}^{(2)}+b_{1}^{(3)} x_{1}^{(3)}+b_{1}^{(4)} x_{1}^{(4)}+b_{1}^{(5)} x_{1}^{(5)}$

$$
+b_{2}^{(1)} x_{2}^{(1)}+b_{2}^{(2)} x_{2}^{(2)}+b_{2}^{(3)} x_{2}^{(3)}+b_{2}^{(4)} x_{2}^{(4)}+b_{2}^{(5)} x_{2}^{(5)}
$$

- Analysis of deviance table

Model	D	d.f.
1 Constant	94.58	24
2 Constant + SBP	56.73	20
3 Constant + cholesterol	49.48	20
4 Constant + SBP + cholesterol	18.86	16

Note: $D=$ deviance.

- Compare models 1 and 2 to assess the significance of SBP.
- Models 1 and 3 for cholesterol
- Models 1 and 4 for SBP and cholesterol together
- Models 3 and 4 for SBP over and above cholesterol
- Models 2 and 4 for cholesterol over and above SBP.

Confounding and Interaction

We may be concerned with only two variables, such as a risk factor and disease status. If the third factor can explain (at least partially) the relationship of the two variables, then confounding is present. e.g. Relationship between the number of children and probability of breast cancer may be explained by the ages of the mothers. If the third factor modifies the relationship between risk factor and the disease, then interaction is present. e.g. Relationship between salt consumption and stroke is quite different for men and women. Then gender interacts with salt consumption in determining the risk of a stroke.

Definition of a confounder

Confounder (a confounding variable) is an an extraneous factor that wholly or partially accounts for the observed effect of the risk factor on disease status. There are two scenarios for effects.

1. an apparent relationship: the confounder is causing the relationship to appear.
2. an apparent lack of relationship: the confounder is masking a true relationship.

Table 1. Risk factor status by disease status

Risk factor	Disease status		
status	Disease	No disease	Risk
Exposed	81	29	0.7364
Not exposed	28	182	0.1333
Relative risk			5.52

Table 2. Risk factor status by disease status by confounder (C) status

| Risk factor | Confounder absent | | | | Confounder present | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| status | Disease | No disease | Risk | | Disease | No disease | Risk |
| Exposed | 1 | 9 | 0.1000 | | 80 | 20 | 0.8000 |
| Not exposed | 20 | 180 | 0.1000 | | 8 | 2 | 0.8000 |
| Relative risk | | | 1.00 | | | | 1.00 |

Reasons for confounding

1. presence/absence of the confounder and the risk factor tend to go together.
2. C is itself, a risk factor for the disease. $R R=\frac{(80+8) /(80+8+20+2)}{(1+20) /(1+20+9+180)}=8$.

Example 2

1. The presence of the confounder tends to go with the absence of the risk factor whilst the absence of the confounder tends to go with the presence of the risk factor.
2. C is, itself, a risk factor with relative risk $R R=\frac{(105+195) /(105+195+5+305)}{(135+5) /(135+5+415+45)}=2.11$.

Example 3

1. Interrelationship between variables in general e.g. Drug taking and heavy drinking
2. Study design: Effect of an active prophylactic drug compared with placebo. Suppose that the patients selected to receive the active drug by chance turned out to be predominantly male; patients on the placebo are predominantly female. If the disease

Confounding Example 2

Table 3. Risk factor status by disease status

Risk factor	Disease status		
status	Disease	No disease	Risk
Exposed	240	420	0.3636
Not exposed	200	350	0.3636
Relative risk			1.00

Table 4. Risk factor status by disease status by confounder (C) status

Risk factor status	Confounder absent				Confounder present		
	Disease	No disease	Risk		Disease	No disease	Risk
Exposed	135	415	0.2455		105	5	0.9545
Not exposed	5	45	0.1000		195	305	0.3900
Relative risk			2.45			2.45	

Confounding Example 3

Table 5. Housing tenure by CHD outcome after 6 years; SHHS men

	CHD?		
Housing tenure	Yes	No	Risk
Rented	85	1821	0.0446
Owner-occupied	77	2400	0.0311
Relative risk			1.43

6 years' follow-up of men in the Scottish Heart Health Study (SHHS). These data are for those with no symptoms of coronary heart disease (CHD) at the beginning of the study. The variable 'housing tenure' records whether they rent or own their accommodation.

Table 6. Housing tenure by CHD outcome by cigarette smoking after 6 years.

	Nonsmokers				Smokers			
Housing tenure	CHD	No CHD	Risk		CHD	No CHD	Risk	
Rented	33	923	0.0345		52	898	0.0547	
Owner-occupied	48	1722	0.0271		29		678	0.0410
Relative risk			1.27				1.33	

9
is more likely in men then we should expect to find that the drug does not perform as well as it should because its effect is confounded with that of sex.

Assessing confounding

Assess confounding by estimating the effect of the risk factor with and without allowing for confounding In the earlier example, the relative risk of renting is 1.43 unadjusted, and around 1.30 after adjustment for smoking. The effect of confounding can be estimated as Ec / E, where E is the unadjusted and Ec is the adjusted, estimate. $1.30 / 1.43=.91$, adjustment has reduced the relative risk by 9%. This approach depends on the risk measure used. When odds ratio is used the results can be quite different with when relative risk is used. For rare disease, odds ratio give similar results (Miettenen, OS and Cook, EF (1981) Confounding: essence and detection. Am J Epidemiol. 114, 593-603)

Confounding Example 2

Table 3. Risk factor status by disease status

Risk factor status	Disease status		
	Disease	No disease	Risk
Exposed	240	420	0.3636
Not exposed	200	350	0.3636
Relative risk			1.00
Odds ratio is $\left(240^{*} 350\right) /\left(200^{*} 420\right)=1$			

Table 4. Risk factor status by disease status by confounder (C) status

Risk factor status	Confounder absent				Confounder present		
	Disease	No disease	Risk		Disease	No disease	Risk
Exposed	135	415	0.2455		105	5	0.9545
Not exposed	5	45	0.1000		195	305	0.3900
Relative risk			2.45				2.45

Odds ratios are $\left(135^{*} 45\right) /\left(5^{*} 415\right)=2.93$ and $\left(105^{*} 305\right) /\left(195^{*} 5\right)=32.85$

