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Historical Background

The Reverend Thomas Bayes, began the objective
Bayesian theory, by solving a particular problem

* Suppose X is Binomial
(n,p); an ‘objective’ belief
would be that each value
of X occurs equally often.

* The only prior distribution
on p consistent with this
is the uniform distribution.

* Along the way, he
codified Bayes theorem.

« Alas, he died before the
work was finally
published in 1763.

Rev. T. Baves



Historical Background

The real inventor of Objective Bayes was Simon Laplace
(also a great mathematician, astronomer and civil servant)
who wrote Théorie Analytique des Probabilité in 1812

* He established the ‘central limit
theorem’ showing that, for large
amounts of data, the posterior
distribution is asymptotically normal
(and the prior does not matter).

* He virtually always utilized a
‘constant’ prior density (reasons:
CLT; parameter choice; robustness).

* He solved very many applications,
especially in physical sciences.

* He had numerous methodological
developments, e.g., a version of the
Fisher exact test.

» Laterin his life he invented
frequentist statistics.




Historical Background

What's in a name, part |

* |t was called probability
theory until 1838.

+ From 1838-1950, it
was called inverse
probability, apparently
so named by Augustus
de Morgan. :

+ From 1950 on it was
called Bayesian :
analysis (as well as the |
other names); for why
see Fienberg (2006).

Augustus pE MorGaN



» Stigler (1983) attributes it to Saunderson (1683-1739), a
blind professor of Optics

» The first deduction of the least square method made by Gauss
(1795) using Bayesian methods



Motivating example

> Assess whether a selected population for growth rate has a
higher growth rate than a control population.

» Classical statistics: the hypothesis to be tested is that there is
no difference between the two treatments

» Before making the experiment, the error of rejecting this
hypothesis when it is actually true is fixed at a level of 5%

» Repeating the experiment an infinite number of times
difference between the averages of these samples ( x; — x2)

» true value of the difference between selected and control
populations (m; — my)



If our sample lies in the shadow area,
» There is no difference between treatments, our sample is a
rare one
» The treatments are different, and repeating an infinite number
of times the experiment, ( x; — X ) will not be distributed
around zero but around an unknown value different from zero.




Bases of Bayesian inference

» Natural to find the most probable value of a parameter based
on our data rather than to find which value of this parameter,
if it would be the true value, would produce our data with a
highest probability.

» To make probability statements based on our data we need
some prior information and it is not clear how to introduce
this prior information in our analysis or how to express lack of
information using probability statements.

» Apply Bayes Theorem!



Bayes' Theorem

> A, B are 2 events

P(A| B) = P(BI‘D(A%P(A)

> Interested in assessing effect of a drug on growth rate of a
rabbit population

» Selected group of rabbits and a control group in which growth
rate has been measured.

» S : Effect of the drug the selected group, C: Effect of the
control group, Interested in assessing (S — C).

» Want to find the probabilities of all possible values of (S — C)
according to the information provided by our data.

» This can be expressed as P(S — C | y)



Components of a Bayesian machinery

» The posterior distribution

Py | S—C)P(S—-C)

» P(y | S — C): distribution of the data for given value of the
unknown, often known or assumed to be known from
reasonable hypotheses.

» P(S — C) : Prior probability of the difference between selected
and control group independent of data.

» P(y) : the probability of the sample.



Prior Information

» Information about the parameters we want to estimate that
exists before we perform our experiment.

> It is almost impossible to do this formally, with some
exceptions. We will distinguish three scenarios:
1. exact prior information
2. vague prior information
3. No prior information - describing ignorance



Exact prior information

XA |Aa| x |Aa| A
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P(AA) = 1/3

P(Aa) = 2/3



Vague / No prior information

» Toss a coin n times - want to estimate the probability of head

> Three states of beliefs were tested
> Prior 3 called objective or non-informative by Bayesian

statisticians

T /v Prior2

4 ‘ .\.
Prior 1

Prior 3

heritability



Summarizing Bayesian inference: The general set-up

» General set up: y; ~ f(y [ 0),0 ~T1(0) &
» Obtain posterior distribution (0 | y1,...,y,) as

I, 10
NO |y, yn) = Jo Ty F(yvi | 0)N(0)




Galton's 1877 machine

1877 Algorithm: Normal Prior-Posterior

Prior

Likelihood
(X=0)

Posterior
discards:

(X=-1)

(X=2)




Example: Binomial-Beta model

» X ~ Bin(n, p), p ~ Beta(a, b)
» p| X ~Beta(a+ X,n— X + b)



Bayes estimates - measures of discrepancy

» Measure of Discrepancy - R = Ep ., LO(y1,-...yn),0)
1. Posterior mean: minimizes R with squared error L
2. Posterior median: minimizes R with L as absolute deviation
3. Posterior mode minimizes R with L as the 0 — 1 loss.



Bayes estimates

P(S-Cly)

0 MEAN MEDIAN MODE



Loss functions

» Mean: 2-fold inconvenience: penalizes high errors, this risk
function is not invariant to transformations

» Mode: signifies the most probable value, easier to calculate in
the pre-MCMC era - may not be representative

» Median: true value has a 50% of probability of being higher or
lower than the median. Attractive loss - invariant to
one-to-one transformations




Bayes estimates

P(S-Cly)

0 MEAN MEDIAN MODE



Posterior mean for the Beta-Binomial problem

» Posterior mean:

a+ X
E X)) = ——
(P X) a+b+n
X n 4@ a+f
 na+B+n a+Ba+B+n
» MLE x (precision of MLE)

(precision of MLE + prior precision) + prior mean

(prior precision)
(precision of MLE + prior precision)




Precision of estimation - credible intervals

» Confidence interval: How often the interval contains the true
value if the samples are generated according to the truth

» Credible intervals: Given the data, how often does the interval
contains the true parameter

> P(0 € [L(y), U(y)] | y) =0.95

» Can find the shortest interval with a 95% probability of
containing the true value (what is called the Highest posterior
density interval at 95%).



Highest posterior density credible interval

b lascyy)

Shortest interval with P=0.93 Symmetric interval with P=0.95



