Bayesian Statistics

Debdeep Pati
Florida State University

April 9, 2013

Summarizing Bayesian inference: The general set-up

- General set up: $y_{i} \sim f(y \mid \theta), \theta \sim \Pi(\theta) \&$
- Obtain posterior distribution $\Pi\left(\theta \mid y_{1}, \ldots, y_{n}\right)$ as

$$
\Pi\left(\theta \mid y_{1}, \ldots, y_{n}\right)=\frac{\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right) \Pi(\theta)}{\int_{\theta} \prod_{i=1}^{n} f\left(y_{i} \mid \theta\right) \Pi(\theta)}
$$

Galton's 1877 machine

I877 Algorithm: Normal Prior-Posterior

Galton's 1877 machine

Figure I. Galton's 1877 machine

Bayes estimates - measures of discrepancy

- Measure of Discrepancy - $R=E_{\theta, y_{1}, \ldots, y_{n}} L\left(\hat{\theta}\left(y_{1}, \ldots, y_{n}\right), \theta\right)$

1. Posterior mean: minimizes R with squared error L
2. Posterior median: minimizes R with L as absolute deviation
3. Posterior mode minimizes R with L as the $0-1$ loss.

Bayes estimates

Loss functions

- Mean: 2-fold inconvenience: penalizes high errors, this risk function is not invariant to transformations
- Mode: signifies the most probable value, easier to calculate in the pre-MCMC era - may not be representative
- Median: true value has a 50% of probability of being higher or lower than the median. Attractive loss - invariant to one-to-one transformations

Solution: The Bayes Theorem:

- $P(A A)=1 / 3$
- By Bayes' Theorem

$$
P(A A \mid y=3)=\frac{P(y=3 \mid A A) P(A A)}{P(y=3)}
$$

Solution: The Bayes Theorem:

- $P(y=3 \mid A A)=1$
- $P(y=3)=P(y=3 \mid A A) P(A A)+P(y=3 \mid A a) P(A a)$
- $P(A a)=2 / 3$ and $P(y=3 \mid A a)=(1 / 2)^{3}=1 / 8$
- Plugging in Bayes' Theorem, $P(A A \mid y=3)=0.80$.
- $P(A a \mid y=3)=0.20$.

Example: Binomial-Beta model

- $X \sim \operatorname{Bin}(n, p), p \sim \operatorname{Beta}(a, b)$
- $p \mid X \sim \operatorname{Beta}(a+X, n-X+b)$

Posterior mean for the Beta-Binomial model

- Posterior mean:

$$
\begin{aligned}
E(p \mid X) & =\frac{a+X}{a+b+n} \\
& =\frac{X}{n} \frac{n}{\alpha+\beta+n}+\frac{\alpha}{\alpha+\beta} \frac{\alpha+\beta}{\alpha+\beta+n}
\end{aligned}
$$

- Posterior mean $=$ MLE $* \frac{\text { (precision of MLE) }}{\text { (precision of MLE }+ \text { prior precision) }}+$ prior mean $* \frac{\text { (prior precision) }}{\text { (precision of MLE + prior precision) }}$

Posterior mean for the Normal-Normal model

- $Y_{1}, \ldots, Y_{n} \sim N(\mu, 1), \mu \sim N\left(\mu_{0}, 1\right)$
- $\mu \mid Y_{1}, \ldots, Y_{n} \sim N\left(\frac{n \bar{X}+\mu_{0}}{n+1}, \frac{1}{n+1}\right)$
- Posterior mean for $\mu=\frac{n \bar{X}+\mu_{0}}{n+1}$.
- Posterior mean $=$ MLE $* \frac{\text { (precision of MLE) }}{\text { (precision of MLE }+ \text { prior precision) }}+$ prior mean $* \frac{\text { (prior precision) }}{\text { (precision of MLE + prior precision) }}$
- Conjugate prior: Posterior distribution has the same family as the prior distribution

The linear model

- $Y_{n \times 1}=X_{n \times p} \beta_{p \times 1}+\epsilon_{n \times 1}$
- $\epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$.
- What are the unknowns? (β and σ)
- Usually $\beta \sim N\left(\beta_{0}, \Sigma_{0}\right)$ and $\sigma^{-2} \sim \operatorname{IG}(a, b)$
- $\beta \mid \sigma^{2}, Y$ is a Normal distribution and $\sigma^{2} \mid \beta, Y$ is an IG distribution.
- But we want $\beta, \sigma^{2} \mid Y$

Gibbs sampling

σ_{0}^{2} arbitrary $\mathrm{f}\left(\mathrm{b} \mid \sigma^{2}=\sigma_{0}^{2}, \mathrm{y}\right)$ $f\left(\sigma^{2} \mid b=b_{a}, y\right)$

Precision of estimation - credible intervals

- Confidence interval: How often the interval contains the parameter if the samples are generated according to the truth
- Bayesian credible intervals: Given the data, want to construct interval that encloses 95% of the posterior probability of the parameter
- $P(\theta \in[L(y), U(y)] \mid y)=0.95$
- Can find the shortest interval with a 95% credible interval (called the Highest posterior density interval at 95\%).

Highest posterior density credible interval

Shortest interval with $\mathrm{P}=0.95$

Symmetric interval with $\mathrm{P}=0.95$

