
yes to (3) two-sample problem? no to (4) underlying distribution normal or can central-
limit theorem be assumed to hold? and yes to (5) underlying distribution binomial?

We now refer to the flowchart at the end of this chapter (p. 409). We answer 
yes to (1) are samples independent? (2) are all expected values 5? and (3) 2  2 
contingency table? This leads us to the box labeled “Use the two-sample test for 
binomial proportions or 2  2 contingency-table methods if no confounding is 
present, or Mantel-Haenszel test if confounding is present.” In brief, a confounder 
is another variable that is potentially related to both the row and column classifica-
tion variables, and it must be controlled for. We discuss methods for controlling for 
confounding in Chapter 13. In this chapter, we assume no confounding is present. 
Thus we use either the two-sample test for binomial proportions (Equation 10.3) or 
the equivalent chi-square test for 2  2 contingency tables (Equation 10.5).

In Section 10.2, we discussed methods for comparing two binomial proportions us-
ing either normal-theory or contingency-table methods. Both methods yield identi-
cal p-values. However, they require that the normal approximation to the binomial 
distribution be valid, which is not always the case, especially for small samples.

 Suppose we want to investigate the relationship 
between high salt intake and death from cardiovascular disease (CVD). Groups of 
high- and low-salt users could be identified and followed over a long time to com-
pare relative frequency of death from CVD in the two groups. In contrast, a much 
less expensive study would involve looking at death records, separating CVD deaths 
from non-CVD deaths, asking a close relative (such as a spouse) about the dietary 
habits of the deceased, and then comparing salt intake between people who died of 
CVD vs. people who died of other causes.

The latter type of study, a retrospective study, may be impossible to perform for 
a number of reasons. But if it is possible, it is almost always less expensive than the 
former type, a prospective study.

 Suppose a retrospective study is done among 
men ages 50 54 in a specific county who died over a 1-month period. The 
investigators try to include approximately an equal number of men who died 
from CVD (the cases) and men who died from other causes (the controls). Of 
35 people who died from CVD, 5 were on a high-salt diet before they died, 
whereas of 25 people who died from other causes 2 were on such a diet. These 
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data, presented in Table 10.9, are in the form of a 2  2 contingency table, so 
the methods of Section 10.2 may be applicable.

However, the expected values of this table are too small for such methods to be 
valid. Indeed,

  

E

E
11

12

7 25 60 2 92

7 35 60 4 08

.

.

thus two of the four cells have expected values less than 5. How should the possible 
association between cause of death and type of diet be assessed?

In this case, Fisher’s exact test can be used. This procedure gives exact levels of 
significance for any 2  2 table but is only necessary for tables with small expected 
values, tables in which the standard chi-square test as given in Equation 10.5 is not 
applicable. For tables in which use of the chi-square test is appropriate, the two tests 
give very similar results. Suppose the probability that a man was on a high-salt diet 
given that his cause of death was noncardiovascular (non-CVD)  p1 and the prob-
ability that a man was on a high-salt diet given that his cause of death was cardio-
vascular (CVD)  p2. We wish to test the hypothesis H0: p1  p2  p vs. H1: p1  p2. Table 
10.10 gives the general layout of the data.

For mathematical convenience, we assume the margins of this table are fixed; 
that is, the numbers of non-CVD deaths and CVD deaths are fixed at a  b and c  d, 
respectively, and the numbers of people on high- and low-salt diets are fixed at a  
c and b  d, respectively. Indeed, it is difficult to compute exact probabilities unless 
one assumes fixed margins. The exact probability of observing the table with cells a, 
b, c, d is as follows.

CHE-ROSNER-10-0205-010.indd   368 7/16/10   1:21:29 PM

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



    
Pr a b c d

a b c d a c b d
n a b c

, , ,
! ! ! !

! ! !
( ) = +( ) +( ) +( ) +( )

!! !d

The formula in Equation 10.7 is easy to remember because the numerator is 
the product of the factorials of each of the row and column margins, and the de-
nominator is the product of the factorial of the grand total and the factorials of the 
individual cells.

Suppose we have the 2  2 table shown in Table 10.11. Compute the exact probabil-
ity of obtaining this table assuming the margins are fixed.

Pr 2 5 3 1
7 4 5 6

11 2 5 3 1
5040 24 120

, , ,
! ! ! !
! ! ! ! !

720
39 916 800 2 120 6

1 0450944 101

, ,
. 00

105 7480192 10
182

.
.

Suppose we consider all possible tables with fixed row margins denoted by N1 and N2 
and fixed column margins denoted by M1 and M2. We assume the rows and columns 
have been rearranged so that M1  M2 and N1  N2. We refer to each table by its (1, 1) 
cell because all other cells are then determined from the fixed row and column 
margins. Let the random variable X denote the cell count in the (1, 1) cell. The prob-
ability distribution of X is given by

Pr X a
N N M M

N a N a M a M N
=( ) =

−( ) −( ) −
1 2 1 2

1 1 2 1

! ! ! !
! ! ! ! ++( )

= ( )
a

a M N
!
, , ,min ,0 1 1K

and N  N1  N2  M1  M2. This probability distribution is called the hypergeo-
metric distribution.

It will be useful for our subsequent work on combining evidence from more than 
one 2  2 table in Chapter 13 to refer to the expected value and variance of the hy-
pergeometric distribution. These are as follows.

 
 Suppose we consider all possible tables with fixed row margins N1, N2 and fixed 

column margins M1, M2, where N1  N2, M1  M2, and N  N1  N2  M1  M2. Let 
the random variable X denote the cell count in the (1, 1) cell. The expected 
value and variance of X are
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E X
M N

N

Var X
M M N N
N N

( ) =

( ) =
−( )

1 1

1 2 1 2
2 1

Thus the exact probability of obtaining a table with cells a, b, c, d in Equation 10.7 
is a special case of the hypergeometric distribution, where N1  a  b, N2  c  d, M1   
a  c, M2  b  d, and N  a  b  c  d. We can evaluate this probability by calculator 
using Equation 10.7, or we can use the HYPGEOMDIST function of Excel. In the latter 
case, to evaluate Pr(a, b, c, d), we specify HYPGEOMDIST (a, a  b, a  c, N). In words, 
the hypergeometric distribution evaluates the probability of obtaining a successes 
out of a sample of a  b observations, given that the total population (in this case, 
the two samples combined), is of size N, of which a  c observations are successes. 
Thus, to evaluate the exact probability in Table 10.11, we specify HYPGEOMDIST  
(2, 7, 5, 11)  .182, which is the probability of obtaining two successes in a sample of 
7 observations given that the total population consists of 11 observations, of which 5 
are successes. The hypergeometric distribution differs from the binomial distribution, 
because in the latter case, we simply evaluate the probability of obtaining a successes 
out of a  b observations, assuming that each outcome is independent. For the hy-
pergeometric distribution, the outcomes are not independent because once a success  
occurs it is less likely that another observation will be a success, as the total number 
of successes is fixed (at a  c). If N is large, the two distributions are very similar be-
cause there is only a slight deviation from independence for the hypergeometric.

The basic strategy in testing the hypothesis H p p H p p0 1 2 1 1 2: :vs.  will be to 
enumerate all possible tables with the same margins as the observed table and to 
compute the exact probability for each such table based on the hypergeometric dis-
tribution. A method for accomplishing this is as follows.

 

(1) Rearrange the rows and columns of the observed table so the smaller row 
total is in the first row and the smaller column total is in the first column.

Suppose that after the rearrangement, the cells in the observed table are a, b, c, d, 
as shown in Table 10.10.

(2) Start with the table with 0 in the (1, 1) cell. The other cells in this table are 
then determined from the row and column margins. Indeed, to maintain 
the same row and column margins as the observed table, the (1, 2) element 
must be a  b, the (2, 1) cell must be a  c, and the (2, 2) element must be  
(c  d) − (a  c)  d − a.

(3) Construct the next table by increasing the (1, 1) cell by 1 (i.e., from 0 to 1), 
decreasing the (1, 2) and (2, 1) cells by 1, and increasing the (2, 2) cell by 1.

(4) Continue increasing and decreasing the cells by 1, as in step 3, until one of 
the cells is 0, at which point all possible tables with the given row and col-
umn margins have been enumerated. Each table in the sequence of tables 
is referred to by its (1, 1) element. Thus, the first table is the “0” table, the 
next table is the “1” table, and so on.

 Enumerate all possible tables with the same row 
and column margins as the observed data in Table 10.9.
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The question now is: What should be done with these probabilities to evaluate 
the significance of the results? The answer depends on whether a one-sided or a two-
sided alternative is being used. In general, the following method can be used.

  
 To test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs. , where the expected value of 

at least one cell is 5 when the data are analyzed in the form of a 2  2 contin-
gency table, use the following procedure:

(1) Enumerate all possible tables with the same row and column margins as the 
observed table, as shown in Equation 10.10.

(2) Compute the exact probability of each table enumerated in step 1, using 
either the computer or the formula in Equation 10.7.

(3) Suppose the observed table is the a table and the last table enumerated is 
the k table.

(a) To test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs. ,  the p-value 
2 0 1 1× + + + + + +min ( ) ( ) . . . ( ), ( ) ( ) . .Pr Pr Pr Pr Pra a a .. ( ), .+[ ]Pr k 5 .

(b) To test the hypothesis H p p H p p0 1 2 1 1 2: := <vs. , the p-value  Pr(0)  
Pr(1)  . . .  Pr(a).

The observed table has a  2, b  23, c  5, d  30. The rows or columns do not need 
to be rearranged because the first row total is smaller than the second row total, and 
the first column total is smaller than the second column total. Start with the 0 table, 
which has 0 in the (1, 1) cell, 25 in the (1, 2) cell, 7 in the (2, 1) cell, and 30 − 2, or 
28, in the (2, 2) cell. The 1 table then has 1 in the (1, 1) cell, 25 − 1  24 in the (1, 2)  
cell, 7 − 1  6 in the (2, 1) cell, and 28  1  29 in the (2, 2) cell. Continue in this 
fashion until the 7 table is reached, which has 0 in the (2, 1) cell, at which point 
all possible tables with the given row and column margins have been enumerated. 
The set of hypergeometric probabilities in Table 10.12 can be easily evaluated using 
the recursive properties of Excel by (1) setting up a column with consecutive values 
from 0 to 7 (say from B1 to B8), (2) using the function HYPGEOMDIST to compute 
Pr(0)  HYPGEOMDIST (B1, 25, 7, 60) and placing it in C1, and then (3) dragging the 
cursor down column C to compute the remaining hypergeometric probabilities. See 
the Companion Website for more details on the use of the HYPGEOMDIST function. 
The collection of tables and their associated probabilities based on the hypergeomet-
ric distribution in Equation 10.8 are given in Table 10.12.

CHE-ROSNER-10-0205-010.indd   371 7/16/10   1:21:33 PM

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



(c) To test the hypothesis H p p H p p0 1 2 1 1 2: := >vs. , the p-value  Pr(a)  
Pr(a 1)  …  Pr(k).

For each of these three alternative hypotheses, the p-value can be interpreted 
as the probability of obtaining a table as extreme as or more extreme than the 
observed table.

 Evaluate the statistical significance of the data in 
Example 10.17 using a two-sided alternative.

We want to test the hypothesis H p p H p p0 1 2 1 1 2: :vs. . Our table is the 2 table 
whose probability is .252 in Table 10.12. Thus, to compute the p-value, the smaller 
of the tail probabilities corresponding to the 2 table is computed and doubled. This 
strategy corresponds to the procedures for the various normal-theory tests studied in 
Chapters 7 and 8. First compute the left-hand tail area,

  Pr Pr Pr( ) ( ) ( ) . . . .0 1 2 017 105 252 375

and the right-hand tail area,

  Pr Pr Pr( ) ( ) . . . ( ) . . . . .2 3 7 252 312 214 082 0016 001 878. .

Then p 2 375 878 5 2 375 749min(. ,. ,. ) (. ) .
If a one-sided alternative of the form H p p H p p0 1 2 1 1 2: :vs.  is used, then the 

p-value equals

 Pr Pr Pr( ) ( ) ( ) . . . .0 1 2 017 105 252 375

Thus the two proportions in this example are not significantly different with 
either a one-sided or two-sided test, and we cannot say, on the basis of this limited 
amount of data, that there is a significant association between salt intake and cause 
of death.

In most instances, computer programs are used to implement Fisher’s exact 
test using statistical packages such as SAS. There are other possible approaches to 
significance testing in the two-sided case. For example, the approach used by SAS is 
to compute

  
p i

i i a
-value (two-tailed) Pr

Pr Pr
( )

: ( ) ( )

In other words, the two-tailed p-value using SAS is the sum of the probabilities of all 
tables whose probabilities are  the probability of the observed table. Using this ap-
proach, the two-tailed p-value would be

  

p-value (two-tailed) Pr Pr Pr Pr( ) ( ) ( ) (0 1 2 4)) ( ) ( ) ( )Pr Pr Pr5 6 7

. . . . . . .017 105 252 214 082 016 001 .688

In this section, we learned about Fisher’s exact test, which is used for comparing 
binomial proportions from two independent samples in 2  2 tables with small ex-
pected counts ( 5). This is the two-sample analog to the exact one-sample binomial 
test given in Equation 7.44. If we refer to the flowchart at the end of this chapter 
(Figure 10.16, p. 409), we answer yes to (1) are samples independent? and no to (2) 
are all expected values 5? This leads us to the box labeled “Use Fisher’s exact test.”

CHE-ROSNER-10-0205-010.indd   372 7/16/10   1:21:35 PM

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



disease–exposure relationships in a hypothesis-testing framework using the Mantel-
Haenszel test. Finally, standardization can be based on stratification by factors other 
than age. For example, standardization by both age and sex is common. Similar 
methods can be used to obtain age–sex standardized risks and standardized RRs as 
given in Definition 13.15.

In this section, we have introduced the concept of a confounding variable (C), 
a variable related to both the disease (D) and exposure (E) variables. Furthermore, 
we classified confounding variables as positive confounders if the associations be-
tween C and D and C and E, respectively, are in the same direction and as negative 
confounders if the associations between C and D and C and E are in opposite direc-
tions. We also discussed when it is or is not appropriate to control for a confounder, 
according to whether C is or is not in the causal pathway between E and D. Finally, 
because age is often an important confounding variable, it is reasonable to consider 
descriptive measures of proportions and relative risk that control for age. Age-stan-
dardized proportions and RRs are such measures.

 A 1985 study identified a group of 518 cancer cases ages 15−59 and a group 
of 518 age- and sex-matched controls by mail questionnaire [4]. The main purpose 
of the study was to look at the effect of passive smoking on cancer risk. The study 
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defined passive smoking as exposure to the cigarette smoke of a spouse who smoked 
at least one cigarette per day for at least 6 months. One potential confounding vari-
able was smoking by the participants themselves (i.e., personal smoking) because 
personal smoking is related to both cancer risk and spouse smoking. Therefore, it 
was important to control for personal smoking before looking at the relationship 
between passive smoking and cancer risk.

To display the data, a 2  2 table relating case–control status to passive smoking 
can be constructed for both nonsmokers and smokers. The data are given in Table 13.11 
for nonsmokers and Table 13.12 for smokers.

The passive-smoking effect can be assessed separately for nonsmokers and smokers. 
Indeed, we notice from Tables 13.11 and 13.12 that the OR in favor of a case being 
exposed to cigarette smoke from a spouse who smokes vs. a control is (120  155)/
(80  111)  2.1 for nonsmokers, whereas the corresponding OR for smokers is (161   
124)/(130  117)  1.3. Thus for both subgroups the trend is in the direction of more 
passive smoking among cases than among controls. The key question is how to 
combine the results from the two tables to obtain an overall estimated OR and test 
of significance for the passive-smoking effect.

In general, the data are stratified into k subgroups according to one or more con-
founding variables to make the units within a stratum as homogeneous as possible. 
The data for each stratum consist of a 2  2 contingency table relating exposure to 
disease, as shown in Table 13.13 for the ith stratum.

Based on our work on Fisher’s exact test, the distribution of ai follows a hypergeo-
metric distribution. The test procedure is based on a comparison of the observed 
number of units in the (1, 1) cell of each stratum (denoted by Oi  ai) with the 
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expected number of units in that cell (denoted by Ei). The test procedure is the 
same regardless of order of the rows and columns; that is, which row (or column) 
is designated as the first row (or column) is arbitrary. Based on the hypergeometric 
distribution (Equation 10.9), the expected number of units in the (1, 1) cell of the 
ith stratum is given by

E
a b a c

ni
i i i i

i
=

+ +( )( )

The observed and expected numbers of units in the (1, 1) cell are then summed over 

all strata, yielding O Oii
k

1
, E Eii

k
1

, and the test is based on O  E. Based on 

the hypergeometric distribution (Equation 10.9), the variance of Oi is given by

V
a b c d a c b d

n ni
i i i i i i i i

i i
=

+ + + +

−

( )( )( )( )
( )2 1

Furthermore, the variance of O is denoted by V Vii
k

1
. The test statistic is given by

X O E VMH
2 25(| | . ) / , which should follow a chi-square distribution with 1 degree 

of freedom (df) under the null hypothesis of no association between disease and ex-
posure. H0 is rejected if XMH

2  is large. The abbreviation MH refers to Mantel-Haenszel; 
this procedure is known as the Mantel-Haenszel test and is summarized as follows.

To assess the association between a dichotomous disease and a dichotomous 
exposure variable after controlling for one or more confounding variables, use 
the following procedure:

(1) Form k strata, based on the level of the confounding variable(s), and con-
struct a 2  2 table relating disease and exposure within each stratum, as 
shown in Table 13.13.

(2) Compute the total observed number of units (O) in the (1, 1) cell over all 
strata, where

     
O O ai

i

k

i
i

k
= =

= =
∑ ∑

1 1

(3) Compute the total expected number of units (E) in the (1, 1) cell over all 
strata, where

     
E E

a b a c
ni

i

k
i i i i

ii

k
= =

+ +

= =
∑ ∑

1 1

( )( )

(4) Compute the variance (V) of O under H0, where

     
V V

a b c d a c b d
n ni

i

k
i i i i i i i i

i1
2

( )( )( )( )
( iii

k

11 )

(5) The test statistic is then given by

     
X

O E
VMH

2
25

=
− −(| | . )

  which under H0 follows a chi-square distribution with 1 df.
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(6) For a two-sided test with significance level ,

  if XMH
2

1 1
2
,  then reject H0.

  if XMH
2

1 1
2
,  then accept H0.

(7) The exact p-value for this test is given by

    p Pr XMH( )1
2 2

(8) Use this test only if the variance V is  5.

(9) Which row or column is designated as first is arbitrary. The test statistic XMH
2  

and the assessment of significance are the same regardless of the order of 
the rows and columns.

The acceptance and rejection regions for the Mantel-Haenszel test are shown 
in Figure 13.1. The computation of the p-value for the Mantel-Haenszel test is 
illustrated in Figure 13.2.
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 Assess the relationship between passive smoking and cancer risk using the 
data stratified by personal smoking status in Tables 13.11 and 13.12.

Denote the nonsmokers as stratum 1 and the smokers as stratum 2.

O1  observed number of nonsmoking cases who are passive smokers  120

O2  observed number of smoking cases who are passive smokers  161

Furthermore,

    

E

E

1

2

231 200
466

99 1

278 291
532

152 1

.

.

Thus the total observed and expected numbers of cases who are passive smokers are, 
respectively,

  O O O
E E E

1 2

1 2

120 161 281
99 1 152 1 251 2. . .

Therefore, more cases are passive smokers than would be expected based on their 
personal smoking habits. Now compute the variance to assess whether this differ-
ence is statistically significant.

    

V

V

1 2

2

231 235 200 266
466 465

28 60

278 254

.

2291 241
532 531

32 952 .

Therefore  V V V1 2 28 60 32 95 61 55. . .

Thus the test statistic XMH
2  is given by

  XMH
2

2281 251 2 5
61 55

858 17
61 55

13
| . | .

.
.
.

.994 1
2~  under H0

Because 1 999
2 210 83 13 94,. . . XMH , it follows that p .001. Thus there is a highly 

significant positive association between case–control status and passive-smoking 
exposure, even after controlling for personal cigarette-smoking habit.

The Mantel-Haenszel method tests significance of the relationship between disease 
and exposure. However, it does not measure the strength of the association. Ideally, 
we would like a measure similar to the OR presented for a single 2 2 contingency 
table in Definition 13.6. Assuming that the underlying OR is the same for each stra-
tum, an estimate of the common underlying OR is provided by the Mantel-Haenszel 
estimator as follows.

In a collection of k 2  2 contingency tables, where the table corresponding to 
the ith stratum is denoted as in Table 13.13, the Mantel-Haenszel estimator of 
the common OR is given by
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