Probability-Class 3

January 14, 2014
Debdeep Pati

Predictive values

Predictive value positive ($\mathrm{PV}+$): P (disease | test +)
Predictive value negative ($\mathrm{PV}-$): P (no disease \mid test-)

Example. A: mammogram positive, B: developing breast cancer in next 2 years Suppose that 7% of the general population of women will have a positive mammogram. What is the probability of developing breast cancer over the next 2 years among women in the general population?
$\mathrm{P}($ breast cancer \mid mammogram +) $=.1$
$\mathrm{P}($ breast cancer \mid mammogram- $)=.0002$
$\mathrm{P}(\mathrm{B})=\mathrm{P}$ (breast cancer)
$=\mathrm{P}($ breast cancer \mid mammogram +$) \mathrm{P}($ mammogram +$)+\mathrm{P}($ breast cancer \mid mammogram$) \mathrm{P}($ mammogram- $)=.1(.07)+.0002(.93)=0.00719$
$\mathrm{PV}+=\mathrm{P}($ breast cancer \mid mammogram +$)=.1$
$\mathrm{PV}-=\mathrm{P}($ no breast cancer \mid mammogram- $)=1-\mathrm{P}($ breast cancer \mid mammogram- $)=1-.0002$ $=.9998$

Sensitivity and specificity

Sensitivity of a symptom is the probability that the symptom is present given that the person has a disease $=\mathrm{P}$ (symptom \mid disease)
Specificity of a symptom is the probability that the symptom is not present given that the person does not have a disease $=\mathrm{P}$ (no symptom \mid no disease $)$
A false negative is defined as a person who tests out as negative but who is actually positive.
A false positive is defined as a person who tests out at positive but who is actually negative.

Bayes' Rule

Let $A=$ symptom and $B=$ disease. Then

$$
P V+=P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)}
$$

This can be written as

$$
P V+=\frac{\text { sensitivity } \times x}{\text { sensitivity } \times x+(1-\text { specificity }) \times(1-x)}
$$

where $x=P(B)=$ probability of disease in the reference population.
Example: (Cancer) Suppose the disease is lung cancer and the symptom is cigarette smoking. If we assume 90% of people with lung cancer and 30% of people without lung cancer are smokers, What is the sensitivity and specificity? Symptom: smoking, Disease: lung cancer
Sensitivity $=\mathrm{P}($ symptom \mid disease $)=.9$
Specificity $=\mathrm{P}($ no symptom \mid no disease $)=1-\mathrm{P}($ symptom \mid no disease $)=.7$

Example: (Hypertension) Suppose 84% of hypertensive and 23% of normotensives are classified as hypertensive by an automated blood-pressure machine. What are the predictive value positive and predictive value negative of the machine, assuming 20% of the adult population is hypertensive? The sensitivity $=\mathrm{P}($ symptom \mid disease $)=.84$ and specificity $=\mathrm{P}($ no symptom \mid no disease $)=1-.23=.77$. From Bayes rule $\mathrm{PV}+=($ sensitivity \times $\mathrm{x}) /($ sensitivity $\times \mathrm{x}+(1$-specificity $) \times(1-\mathrm{x}))$
PV- $=($ specificity $\times(1-\mathrm{x})) /($ specificity $\times(1-\mathrm{x})+(1$-sensitivity $) \times \mathrm{x})$
$\mathrm{PV}+=(.84)(.2) /[(.84)(.2)+(.23)(.8)]=.168 / .352=.48$
PV- $=(.77)(.8) /[(.77)(.8)+(.16)(.2)]=.616 / .648=.95$

An example in radiology

CT rating by radiologist

| True
 Disease
 status | Definitely
 normal (1) | Probably
 normal (2) | Questionable
 (3) | Probably
 abnormal (4) | Definitely
 abnormal (5) | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Normal |
| :--- |
| Abnormal |

Table 1: Sensitivity vs. Specificity for different test criteria

Test positive criteria	Sensitivity	Specificity
$1+$	1	0
$2+$	0.94	0.57
$3+$	0.90	0.67
$4+$	0.86	0.78
$5+$	0.65	0.97
$6+$	0	1.0

Receiving operating characteristic (ROC) curve
ROC curve is a plot of the sensitivity versus (1-specificity) of a screening test, where the different points on the curve correspond to different cutoff points used to designate test positive.

Figure 3.7 ROC curve for the data in Table 3.4*

*Each point represents (1 - specificity, sensitivity) for different test-positive criteria.

Practical

http://www.amstat.org/publications/jse/v13n2/datasets.kahn.html

