Probability

Expected value of linear combination of random variables

1. The expected value of the sum of n random variables is the sum of n respective expected values.

$$
E(L)=E\left(c_{1} X_{1}+\ldots+c_{n} X_{n}\right)=c_{1} E\left(X_{1}\right)+c_{2} E\left(X_{2}\right)+\ldots c_{n} E\left(X_{n}\right)
$$

2. Ex. (Renal Disease) Suppose the expected values of serum creatinine for the white and the black individuals are 1.3 and 1.5 respectively. What is the expected value of the average serum-creatinine level of a single white and a single black individual? The expected value of the average serum-creatinine level $=E\left(0.5 X_{1}+0.5 X_{2}\right)=$ $0.5 E\left(X_{1}\right)+0.5 E\left(X_{2}\right)=0.65+0.75=1.4$
3. Ex. (Renal Disease) Suppose X_{1}, X_{2} are defined as before. If we know that $\operatorname{Var}\left(X_{1}\right)=$ $\operatorname{Var}\left(X_{2}\right)=0.25$, then what is the variance of the average serum-creatinine level over a single white and a single black individual? $\operatorname{Var}\left(0.5 X_{1}+0.5 X_{2}\right)=(0.5)^{2} \operatorname{Var}\left(X_{1}\right)+$ $(0.5)^{2} \operatorname{Var}\left(X_{2}\right)=0.25(0.25)+0.25(0.25)=0.125$
4. If X_{1}, X_{2} are defined as in previous examples and are each normally distributed, then what is the distribution of the average $L=0.5 X_{1}+0.5 X_{2}$? Since $E(L)=$ $1.4, \operatorname{Var}(L)=.125$, then $\left(X_{1}+X_{2}\right) / 2 \sim N(1.4,0.125)$

Normal Approximation to the Binomial distribution

Ex. Suppose a binomial distribution has parameters $n=25, p=.4$. How can $P(7 \leq X \leq$ 12) be approximated? $n p=25(.4)=10, n p(1-p)=25(.4)(.6)=6.0$. This distribution can be approximated by $N(10,6) . P(7 \leq X \leq 12)$ equals the area under the normal curve from 6.5 to 12.5 .

Normal Approximation to the Poisson Distribution

Ex. Consider again the distribution of the number of bacteria in a petri plate of area A. Assume the probability of observing X bacteria is given exactly by a Poisson distribution with parameter $\mu=\lambda A$, where $\lambda=0.1$ bacteria $/ \mathrm{cm}^{2}$ and $A=100 \mathrm{~cm}^{2}$. Suppose 20 bacteria are observed in this area. How unusual is this event? The exact distribution of the number of bacteria observed in $100 \mathrm{~cm}^{2}$ is Poisson with parameter $\mu=10$. We can approximate this distribution by a normal distribution with mean $=10$ and variance $=10$

