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Association between two variables

1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by

Cov(X,Y ) = E(X − E(X))(Y − E(Y ))

2. Covariance is not convenient for expressing the strength of association between two
variables.

3. The correlation coefficient between 2 random variables X and Y is denoted by Corr(X,Y )
and is defined by

ρ = corr(X,Y ) =
Cov(X,Y )

σxσy

4. ρ is a dimensionless quantity between -1 and 1, for linearly related random vari-
ables, 0 implies independence In general, correlation zero does not necessarily imply
independence

5. 1 implies nearly perfect positive dependence, -1 implies nearly perfect negative de-
pendence.

Cumulative distribution function

Cumulative distribution function (cdf) for the random variable X evaluated at the point a
is defined as the probability that X will take on values ≤ a. It is represented by the area
under the pdf to the left of a.
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(a) cdf (b) cdf of normal

Normal Table

Estimation

1. Statistical problems - a) Distribution is known. b) Distribution is unknown.

2. When Distribution is known, then we can have either i) Parameters are known or ii)
Parameters of the distribution are unknown

3. Estimation: Want to estimate the values of specific population parameters
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4. Hypothesis testing: Testing whether the value of a population parameter is equal to
some specific value.

Estimation problems

1. Measurements of systolic blood pressures of a group of people, which are believed be
follow normal distribution. How can we estimate the parameters (µ, σ2)?

2. Estimation of the prevalence of HIV-positive people in a low-income community - If
we assume the number of cases among n people sampled is binomial with parameter
p, how is the parameter p estimated?

3. Interested in both Point estimation and Interval estimation

Estimation of the Mean of a Distribution

1. A natural estimation of the population mean µ is the sample mean

X̄ =
n∑
i=1

Xi

3



2. Since each Xi’s are assumed to be random variables, the quantity X̄ is also random.

3. Let X1, . . . , Xn be a random sample drawn from some population with mean µ. Then
E(X̄) = µ.

4. An estimator θ̂ of a parameter θ is unbiased E(θ̂) = θ.

5. X̄ is the minimum variance unbiased estimator of µ.

6. Variance of the mean: V ar(X̄) = 1
n2

∑n
i=1 V ar(Xi) = nσ2

n2 = σ2/n assuming V (Xi) =
σ2 for all i.

7. Standard Error of the mean: Let X1, X2, . . . , Xn be a random sample from a popula-
tion with underlying mean µ and variance σ2. The set of sample means in repeated
random samples of size n from this population has variance σ2/n. The standard
deviation of this set of sample means is σ/

√
n and is referred to as the standard error

of the mean (sem) of the standard error.

The standard error of the mean, or the standard error, is given by σ/
√
n and is

estimated by s/
√
n. The standard error represents the estimated standard deviation

obtained form a set of sample means from repeated samples of size n from a ovulation
with underlying variance σ2.
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8. Ex. Compute the standard error of the mean for the following sample of birth weights.
97, 125, 62, 120, 132, 135, 118, 137, 126, 118.

X̄ =
n∑
i=1

Xi/n, s =

√∑n
i=1(xi − x̄)2

n− 1

9. The mean is 117 and standard deviation is 22.4. Hence s/
√
n = 22.44/

√
10 = 7.09.

Central Limit Theorem

Let X1, X2, . . . , Xn be a ranom sample from a population with underlying mean µ and
variance σ2, then X̄ ∼ N(µ, σ2/n). Many distributions encountered in practice are not
normal, but sampling distribution of the sample average is approximately normal.

Serum triglyceride distribution tends to be positively skewed, with a few people with very
high values. The mean over samples of size n is normally distributed
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Sampling distribution

Suppose that we draw all possible samples of size n from a given population. Suppose
further that we compute a statistic (e.g., a mean, proportion, standard deviation) for each
sample. The probability distribution of this statistic is called a sampling distribution.
Example(Obstetrics): Compute the probability that the mean birthweight from a sample
of 10 drawn from 1000 infants will fall between 98.0 and 126.0 oz. the mean birthweight
for the 1000 birthweights is 112.0 and standard deviation is 20.6. Assuming X̄ follows a
normal distribution with mean µ = 112oz and standard deviation σ/

√
n = 20.6

√
10 = 6.51.

Then we need to calculate

P (98.0 ≤ X̄ ≤ 126.0) = Φ(
126.0− 112.0

6.51
)− Φ(

98.0− 112.0

6.51
) = 0.968

We can also do this in R by typing

pnorm(126, 112, 20.6) - pnorm(98,112, 20.6)

1 Interval Estimation

1. Quantify the uncertainty

2. The 10 birthweigths 97, 125, 62, 120, 132, 135, 118, 137, 126, 118 have a mean of 116.9
oz. How certain are we that the true mean is 116.9 oz? 116.9oz±1 oz and 116.9oz±1
lb are certainly different.
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3. The sample mean X̄ ∼ N(µ, σ2/n). If µ and σ2 are known then if you keep on
generating samples, 95% of all such samples will fall in the interval

(µ− 1.96σ/
√
n, µ+ 1.96σ/

√
n)

4. We can also express the mean in standardized form by

Z =
X̄ − µ
σ/
√
n

5. 95% of Z value from repeated samples of size n will fall between -1.96 and +1.96.

6. However, the assumption that σ is known is quite artificial. Since σ is unknown, we
can estimate σ by the sample standard deviation s and construct confidence intervals
using

X̄ − µ
s/
√
n

7. This quantity is no longer normally distributed. The distribution is called Students
t distribution, or t distribution if Xi’s are normally distributed. t distribution is not
a unique distribution. It is a family of distributions indexed by a parameter, the
degrees of freedom (df).

8. If X1, . . . , Xn ∼ N(µ, σ2) and are independent, then X̄−µ
s/
√
n

is distributed as a t distri-

bution with n− 1 degrees of freedom.

9. The 100 × u th percentile of a t distribution is d degrees of freedom is denoted by
td,u, that is,

P (td < td,u) = u

10. t20,0.95 stands for the95 th percentile or the upper 5th percentile of a t distribution
with 20 degrees of freedom.
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