January 31, 2013

Expected value of linear combination of random variables

1. The expected value of the sum of n random variables is the sum of n respective expected values.

$$E(L) = E(c_1X_1 + \ldots + c_nX_n) = c_1E(X_1) + c_2E(X_2) + \ldots + c_nE(X_n)$$

- 2. Ex. (Renal Disease) Suppose the expected values of serum creatinine for the white and the black individuals are 1.3 and 1.5 respectively. What is the expected value of the average serum-creatinine level of a single white and a single black individual? The expected value of the average serum-creatinine level = $E(0.5X_1 + 0.5X_2) =$ $0.5E(X_1) + 0.5E(X_2) = 0.65 + 0.75 = 1.4$
- 3. Ex. (Renal Disease) Suppose X_1, X_2 are defined as before. If we know that $Var(X_1) = Var(X_2) = 0.25$, then what is the variance of the average serum-creatinine level over a single white and a single black individual? $Var(0.5X_1 + 0.5X_2) = (0.5)^2 Var(X_1) + (0.5)^2 Var(X_2) = 0.25(0.25) + 0.25(0.25) = 0.125$
- 4. If X_1, X_2 are defined as in previous examples and are each normally distributed, then what is the distribution of the average $L = 0.5X_1 + 0.5X_2$? Since E(L) = 1.4, Var(L) = .125, then $(X_1 + X_2)/2 \sim N(1.4, 0.125)$

Normal Approximation to the Binomial distribution

Ex. Suppose a binomial distribution has parameters n = 25, p = .4. How can $P(7 \le X \le 12)$ be approximated? np = 25(.4) = 10, np(1-p) = 25(.4)(.6) = 6.0. This distribution can be approximated by N(10, 6). $P(7 \le X \le 12)$ equals the area under the normal curve from 6.5 to 12.5.

Normal Approximation to the Poisson Distribution

Ex. Consider again the distribution of the number of bacteria in a petri plate of area A. Assume the probability of observing X bacteria is given exactly by a Poisson distribution with parameter $\mu = \lambda A$, where $\lambda = 0.1 \ bacteria/cm^2$ and $A = 100 \ cm^2$. Suppose 20 bacteria are observed in this area. How unusual is this event? The exact distribution of the number of bacteria observed in $100 \ cm^2$ is Poisson with parameter $\mu = 10$. We can approximate this distribution by a normal distribution with mean = 10 and variance = 10

Association between two variables

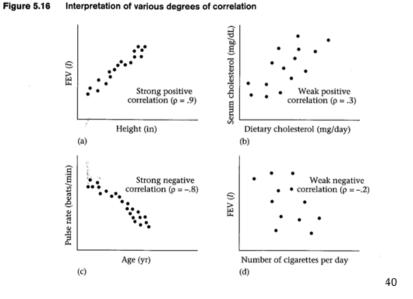
1. Covariance between two variables X and Y is denoted by Cov(X, Y) and defined by

$$Cov(X,Y) = E(X - E(X))(Y - E(Y))$$

- 2. Covariance is not convenient for expressing the strength of association between two variables.
- 3. The correlation coefficient between 2 random variables X and Y is denoted by Corr(X, Y)and is defined by

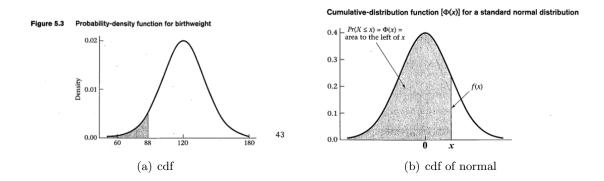
$$\rho = corr(X, Y) = \frac{Cov(X, Y)}{\sigma_x \sigma_y}$$

- 4. ρ is a dimensionless quantity between -1 and 1, for linearly related random variables, 0 implies independence In general, correlation zero does not necessarily imply independence
- 5. 1 implies nearly perfect positive dependence, -1 implies nearly perfect negative dependence.



Cumulative distribution function

Cumulative distribution function (cdf) for the random variable X evaluated at the point a is defined as the probability that X will take on values \leq a. It is represented by the area under the pdf to the left of a.



Normal Table

