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Estimation

1. Statistical problems - a) Distribution is known. b) Distribution is unknown.

2. When Distribution is known, then we can have either i) Parameters are known or ii)
Parameters of the distribution are unknown

3. Estimation: Want to estimate the values of specific population parameters

4. Hypothesis testing: Testing whether the value of a population parameter is equal to
some specific value.

Estimation problems

1. Measurements of systolic blood pressures of a group of people, which are believed be
follow normal distribution. How can we estimate the parameters (µ, σ2)?

2. Estimation of the prevalence of HIV-positive people in a low-income community - If
we assume the number of cases among n people sampled is binomial with parameter
p, how is the parameter p estimated?

3. Interested in both Point estimation and Interval estimation

Estimation of the Mean of a Distribution

1. A natural estimation of the population mean µ is the sample mean

X̄ =

n∑
i=1

Xi

2. Since each Xi’s are assumed to be random variables, the quantity X̄ is also random.

3. Let X1, . . . , Xn be a random sample drawn from some population with mean µ. Then
E(X̄) = µ.

4. An estimator θ̂ of a parameter θ is unbiased E(θ̂) = θ.

5. X̄ is the minimum variance unbiased estimator of µ.
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6. Variance of the mean: V ar(X̄) = 1
n2

∑n
i=1 V ar(Xi) = nσ2

n2 = σ2/n assuming V (Xi) =
σ2 for all i.

7. Standard Error of the mean: Let X1, X2, . . . , Xn be a random sample from a popula-
tion with underlying mean µ and variance σ2. The set of sample means in repeated
random samples of size n from this population has variance σ2/n. The standard
deviation of this set of sample means is σ/

√
n and is referred to as the standard error

of the mean (sem) of the standard error.

The standard error of the mean, or the standard error, is given by σ/
√
n and is

estimated by s/
√
n. The standard error represents the estimated standard deviation

obtained form a set of sample means from repeated samples of size n from a ovulation
with underlying variance σ2.

8. Ex. Compute the standard error of the mean for the following sample of birth weights.
97, 125, 62, 120, 132, 135, 118, 137, 126, 118.

X̄ =
n∑
i=1

Xi/n, s =

√∑n
i=1(xi − x̄)2

n− 1

9. The mean is 117 and standard deviation is 22.4. Hence s/
√
n = 22.44/

√
10 = 7.09.
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Central Limit Theorem

Let X1, X2, . . . , Xn be a ranom sample from a population with underlying mean µ and
variance σ2, then X̄ ∼ N(µ, σ2/n). Many distributions encountered in practice are not
normal, but sampling distribution of the sample average is approximately normal.

Serum triglyceride distribution tends to be positively skewed, with a few people with very
high values. The mean over samples of size n is normally distributed

Sampling distribution

Suppose that we draw all possible samples of size n from a given population. Suppose
further that we compute a statistic (e.g., a mean, proportion, standard deviation) for each
sample. The probability distribution of this statistic is called a sampling distribution.
Example(Obstetrics): Compute the probability that the mean birthweight from a sample
of 10 drawn from 1000 infants will fall between 98.0 and 126.0 oz. the mean birthweight
for the 1000 birthweights is 112.0 and standard deviation is 20.6. Assuming X̄ follows a
normal distribution with mean µ = 112oz and standard deviation σ/

√
n = 20.6

√
10 = 6.51.
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Then we need to calculate

P (98.0 ≤ X̄ ≤ 126.0) = Φ(
126.0− 112.0

6.51
)− Φ(

98.0− 112.0

6.51
) = 0.968

We can also do this in R by typing

pnorm(126, 112, 20.6) - pnorm(98,112, 20.6)

1 Interval Estimation

1. Quantify the uncertainty

2. The 10 birthweigths 97, 125, 62, 120, 132, 135, 118, 137, 126, 118 have a mean of 116.9
oz. How certain are we that the true mean is 116.9 oz? 116.9oz±1 oz and 116.9oz±1
lb are certainly different.

3. The sample mean X̄ ∼ N(µ, σ2/n). If µ and σ2 are known then if you keep on
generating samples, 95% of all such samples will fall in the interval

(µ− 1.96σ/
√
n, µ+ 1.96σ/

√
n)

4. We can also express the mean in standardized form by

Z =
X̄ − µ
σ/
√
n
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5. 95% of Z value from repeated samples of size n will fall between -1.96 and +1.96.

6. However, the assumption that σ is known is quite artificial. Since σ is unknown, we
can estimate σ by the sample standard deviation s and construct confidence intervals
using

X̄ − µ
s/
√
n

7. This quantity is no longer normally distributed. The distribution is called Students
t distribution, or t distribution if Xi’s are normally distributed. t distribution is not
a unique distribution. It is a family of distributions indexed by a parameter, the
degrees of freedom (df).

8. If X1, . . . , Xn ∼ N(µ, σ2) and are independent, then X̄−µ
s/
√
n

is distributed as a t distri-

bution with n− 1 degrees of freedom.

9. The 100 × u th percentile of a t distribution is d degrees of freedom is denoted by
td,u, that is,

P (td < td,u) = u

10. t20,0.95 stands for the95 th percentile or the upper 5th percentile of a t distribution
with 20 degrees of freedom.

1.1 Comparison of t and Normal distribution

1. Compare t with d degrees of freedom to N(0, 1). For any α > 0.5,td,1−α is always
larger than the corresponding percentile for an N(0, 1)(z1−α). When d becomes large
t converge to N(0, 1).

2. Find the upper 5th percentile of a t distribution with 23 df. t23,.95 is given in row 23
and column 0.95 of Table 5 and is 1.714. Probabilities associated with t distribution
can also be calculated using statistical programs. In R : qt(.95, 23)

3. If σ is unknown we want 100(1−α)% of the t statistics should fall between the lower
and upper quantile of a tn−1 distribution.

P (tn−1,α/2 < t < tn−1,1−α/2) = 1− α

The above equation leads to

P (X̄ − tn−1,α/2S/
√
n < µ < X̄ + tn−1,α/2S/

√
n) = 1− α

The interval [X̄ − tn−1,α/2S/
√
n, X̄ + tn−1,α/2S/

√
n] is referred to as a 100(1 − α)%

confidence interval for µ.
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4. Compute a 95% CI for the mean birthweight based on the sample of size 10 in the
previous example.

5. Using confidence interval in decision making: Suppose we know the mean choles-
terol level in children ages 2-14 is 175 mg/dL. We wish to see if there is a familial
aggregation of cholesterol levels. Identify a group of fathers with cholesterol levels
≥ 250mg/dL and measure the cholesterol levels of their 2-14-year-old offspring. Sup-
pose we find the mean cholesterol level in a group of 100 such children is 207.3 mg/dL
with standard deviation = 30 mg/dL. Is this value far enough from 175 mg/dL for us
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to believe that the underlying mean cholesterol level in the population of all children
is different from 175 mg/dL?
Construct a 95% CI for µ on the basis of our sample data. Decision rule: if the
interval contains 175 mg/dL, then we cannot say the underlying mean for this group
is any different from the mean for all children (175). If the CI does not contain 175,
then we would conclude the true underlying mean for this group is different from
175. If the lower bound of the CI is above 175, then there is a demonstrated familial
aggregation of cholesterol levels. The CI in this case is given by

207.3± t99,0.975(30)/
√

100 = 207.3± 6.0 = (201.3, 213.3)

2 Case study

1. Assess whether there is a relationship between bone-mineral density (BMD) and
cigarette smoking. 41 twin pairs are selected and each pair has different smoking
histories. Matched-pair study - The exposed (heavier-smoking twin) and control
(lighter-smoking twin) are matched on other characteristics related to the outcome
(BMD). The matching is based on having similar genes so that the effect of genes on
outcome can be safely ignored.

2. The difference in bone-mineral density (BMD) was studied as function of the differ-
ence in tobacco use. Difference: BMD of heavier-smoking twin - BMD of lighter-
smoking twin. Tobacco consumption was expressed in terms of pack-year. One
pack-year is defined as 1 pack of cigarettes per day consumed for a year. BMD
was assessed separately at three sites - The lumbar spine, the femoral neck, and the
femoral shaft.

3. To assess whether there is a relationship between BMD and cigarette smoking.
Calculate the difference in BMD between heavier-smoking twin and the lighter-
smoking twin for each twin pair. Calculate the average of these differences, which is
−0.036± 0.014g/cm2.

4. The 95% CI for the true mean difference in BMD is

−0.036± t40,0.975(s/
√

41) = −0.036± 2.021(0.014) = (−0.064,−0.008)

5. Upper bound is less than 0. The true mean difference is less than 0. The true mean
BMD for the heavier-smoking twins is lower than for the lighter-smoking twins.
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