1 Properties of expectation

1. If n balls are randomly selected from an urn containing N balls of which m are white, find the expected number of white balls selected. Let X denote the number of white balls selected, $X=X_{1}+\cdots+X_{m}$ where

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if the ith white ball is selected } \\
0, \text { otherwise }
\end{array}\right.
$$

$E\left(X_{i}\right)=P\left(X_{i}=1\right)=\frac{\binom{1}{1}\binom{N-1}{n-1}}{\binom{N}{n}}=\frac{n}{N}$ Hence $E(X)=m n / N$.
Alternatively, $X=Y_{1}+\cdots+Y_{n}$ where

$$
Y_{i}=\left\{\begin{array}{l}
1, \text { if the ith ball selected is white } \\
0, \text { otherwise }
\end{array}\right.
$$

Since the i ball selected is equally likely to be any of the N balls

$$
E\left(Y_{i}\right)=\frac{m}{N}
$$

So $E(X)=m n / N$
2. A group of N people throw their hats into the center of a room. The hats are mixed up, and each person randomly selects one. Find the expected number of people that select their own hat. Let X denote the number of matches, we can $E(X)$ by $X=X_{1}+X_{2}+\ldots X_{N}$ where

$$
X_{i}=\left\{\begin{array}{l}
1 \text { if the ith person selects his own hat } \\
0 \text { otherwise }
\end{array}\right.
$$

Since, for each i, the ith person is equally likely to select any of the N hats

$$
E\left(X_{i}\right)=P\left(X_{i}=1\right)=\frac{1}{N}
$$

Thus

$$
E(X)=E\left(X_{1}\right)+\ldots+E\left(X_{N}\right)=\frac{1}{N} \times N=1
$$

On an average, exactly one person selects his own hat.
3. Suppose that there are N different types of coupons and each time one obtains a coupon it is equally likely to be any one of the N types. Find the expected number of coupons one need amass before obtaining a complete set of at least one of each type.
Let X denote the number of coupons collected before a complete set is attained. We define $X_{i}, i=0,1, \ldots N-1$ to be the number of additional coupons that need to be obtained after i distinct types have ten collected in order to obtain another type, and note that $X=X_{0}+X_{1}+\ldots, X_{N-1}$. When i distinct types of coupons have already been collected, a new coupon obtained will be of a distinct type with probability $(N-i) / N$. Hence

$$
P\left(X_{i}=k\right)=\frac{N-i}{N}\left(\frac{i}{N}\right)^{k-1}, k \geq 1
$$

Clearly, X_{i} is a geometric random variable with parameter $(N-i) / N$. Hence $E\left(X_{i}\right)=$ $\frac{N}{N-i}$ Thus

$$
E(X)=1+\frac{N}{N-1}+\frac{N}{N-2}+\ldots+N=N\left(1+\ldots+\frac{1}{N-1}+\frac{1}{N}\right)
$$

1.1 Moments of the number of Events that occur

1. Concept of moment is evolved from the moment concept in physics.
2. The nth moment (about zero) of a probability density function $f(x)$ is the expected value of $E\left(X^{n}\right)$.
3. For discrete random variables with probability mass function $p(x) . E\left(X^{n}\right)=\sum_{\text {allx }} x^{n} p(x)$
4. For continuos random variables with probability density function $f(x)$. $E\left(X^{n}\right)=$ $\int_{-\infty}^{\infty} x^{n} f(x) d x$
5. $E[X]$ is the first moment of $X, E\left[X^{2}\right]$ is the second moment of the pdf of X and so on.
6. For given events A_{1}, \ldots, A_{n}, find $E[X]$, where X is the number of these events that occur. We define an indicator variable I_{i} for event A_{i}, and $I_{i}=1$ if A_{i} occurs. As $X=\sum_{i=1}^{n} I_{i}$, we have $E(X)=E\left(\sum_{i=1}^{n} I_{i}\right)=\sum_{i=1}^{n} E\left(I_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
7. We are interested in the number of pairs of events that occurs, the number of pairs
is equal to $\sum_{i<j} I_{i} I_{j}$, which is equal to $\binom{X}{2}$. Hence

$$
\begin{aligned}
E\left[\binom{X}{2}\right] & =\sum_{i<j} E\left(I_{i} I_{j}\right)=\sum_{i<j} P\left(A_{i} \cap A_{j}\right) \\
E\left(X^{2}-X\right) & =2 \sum_{i<j} P\left(A_{i} \cap A_{j}\right)
\end{aligned}
$$

8.

$$
\begin{aligned}
\binom{X}{k} & =\sum_{i_{1}<i_{2}<\ldots i_{k}} I_{i_{1}} I_{i_{2}} \ldots I_{i_{k}} \\
E\left[\binom{X}{k}\right] & =\sum_{i_{1}<i_{2}<\cdots<i_{k}} E\left(I_{i_{1}} I_{i_{2}} \ldots I_{i_{k}}\right)=\sum_{i_{1}<i_{2}<\ldots<i_{k}} P\left(A_{i_{1}} A_{i_{2}} \ldots \cap A_{i_{k}}\right)
\end{aligned}
$$

1.2 Moments of Binomial random variable

Consider n independent trials, with each trial being a success with probability p. Let A_{i} be he event that the trial i is a success. When $i \neq j, P\left(A_{i} \cap A_{j}\right)=p^{2}$. Clearly $E\left(\binom{X}{2}=\binom{n}{2} p^{2}\right.$ and hence $E\left(X^{2}\right)=n\left(n-1 p^{2}+n p\right.$. $E(X(X-1)(X-2))=n(n-1)(n-2) p^{3}$ and hence $E\left(X^{3}\right)=3 E\left(X^{2}\right)-2 E(X)+n(n-1)(n-2) p^{3}=3 n(n-1) p^{2}+n p+n(n-1)(n-2) p^{3}$.

