1 Moments of the number of Events that occur

1. Concept of moment is evolved from the moment concept in physics.
2. The nth moment (about zero) of a probability density function $f(x)$ is the expected value of $E\left(X^{n}\right)$.
3. For discrete random variables with probability mass function $p(x) . E\left(X^{n}\right)=\sum_{\text {allx }} x^{n} p(x)$
4. For continuos random variables with probability density function $f(x)$. $E\left(X^{n}\right)=$ $\int_{-\infty}^{\infty} x^{n} f(x) d x$
5. $E[X]$ is the first moment of $X, E\left[X^{2}\right]$ is the second moment of the pdf of X and so on.
6. For given events A_{1}, \ldots, A_{n}, find $E[X]$, where X is the number of these events that occur. We define an indicator variable I_{i} for event A_{i}, and $I_{i}=1$ if A_{i} occurs. As $X=\sum_{i=1}^{n} I_{i}$, we have $E(X)=E\left(\sum_{i=1}^{n} I_{i}\right)=\sum_{i=1}^{n} E\left(I_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
7. We are interested in the number of pairs of events that occurs, the number of pairs is equal to $\sum_{i<j} I_{i} I_{j}$, which is equal to $\binom{X}{2}$. Hence

$$
\begin{aligned}
E\left[\binom{X}{2}\right] & =\sum_{i<j} E\left(I_{i} I_{j}\right)=\sum_{i<j} P\left(A_{i} \cap A_{j}\right) \\
E\left(X^{2}-X\right) & =2 \sum_{i<j} P\left(A_{i} \cap A_{j}\right)
\end{aligned}
$$

8.

$$
\begin{aligned}
\binom{X}{k} & =\sum_{i_{1}<i_{2}<\ldots i_{k}} I_{i_{1}} I_{i_{2}} \ldots I_{i_{k}} \\
E\left[\binom{X}{k}\right] & =\sum_{i_{1}<i_{2}<\cdots<i_{k}} E\left(I_{i_{1}} I_{i_{2}} \ldots I_{i_{k}}\right)=\sum_{i_{1}<i_{2}<\ldots<i_{k}} P\left(A_{i_{1}} A_{i_{2}} \ldots \cap A_{i_{k}}\right)
\end{aligned}
$$

1.1 Moments of Binomial random variable

Consider n independent trials, with each trial being a success with probability p. Let A_{i} be he event that the trial i is a success. When $i \neq j, P\left(A_{i} \cap A_{j}\right)=p^{2}$. Clearly $E\left(\binom{X}{2}=\binom{n}{2} p^{2}\right.$ and hence $E\left(X^{2}\right)=n\left(n-1 p^{2}+n p . E(X(X-1)(X-2))=n(n-1)(n-2) p^{3}\right.$ and hence $E\left(X^{3}\right)=3 E\left(X^{2}\right)-2 E(X)+n(n-1)(n-2) p^{3}=3 n(n-1) p^{2}+n p+n(n-1)(n-2) p^{3}$.

2 Covariance, Variance of Sums and Correlations

Theorem 1 If X and Y are independent, then for any function h and g

$$
E(g(X) h(Y))=E(g(X)) E(h(Y))
$$

The covariance between X and Y, denoted by $\operatorname{Cov}(X, Y)$, is defined by

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y-E[X] Y-X E[Y]+E[Y] E[X]] \\
& =E[X Y]-E[X] E[Y]-E[X] E[Y]+E[X] E[Y] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

If X and Y are independent, $\operatorname{Cov}(X, Y)=0$. If $\operatorname{Cov}(X, Y)=0, X$ and Y may not be independent. $P(X=0)=P(X=1)=P(X=-1)=1 / 3 Y=0$ if $X \neq 0, Y=1$ if $X=0$ $X Y=0, E[X Y]=0$, and $E[X]=0$, so $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0$ But X and Y are not independent.

Theorem 2 1. $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
2. $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
3. $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$
4. $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(X_{i}, X_{j}\right)$

Hence

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & =\operatorname{Cov}\left(\sum_{i=1}^{n} X_{j}, \sum_{i=1}^{n} X_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

which is equivalent to the following

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

If X_{1}, \ldots, X_{n} are pairwise independent, we have

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

