1 Correlation of two random variables

Correlation of two random variables X and Y, denoted by $\rho(X, Y)$, and is defined by

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Theorem $1-1 \leq \rho(X, Y) \leq 1$

$$
\begin{aligned}
0 & \leq \operatorname{Var}\left(X / \sigma_{x}+Y / \sigma_{y}\right) \\
& =2(1+\rho(X, Y))
\end{aligned}
$$

Showing that $\rho(X, Y) \geq-1$ and using

$$
\begin{aligned}
0 & \leq \operatorname{Var}\left(X / \sigma_{x}-Y / \sigma_{y}\right) \\
& =2(1-\rho(X, Y))
\end{aligned}
$$

showing that $\rho(X, Y) \leq 1$.
Example: Let I_{A} and I_{B} be indicator variables for the event A and B respectively. Then

$$
\begin{aligned}
\operatorname{Cov}\left(I_{A}, I_{B}\right) & =P(A \cap B)-P(A) P(B) \\
& =P(A \mid B) P(B)-P(A) P(B) \\
P(B)[P(A \mid B-P(A)] &
\end{aligned}
$$

2 Conditional Expectation

Define the conditional probability function

$$
p_{X \mid Y}(x \mid y)=\frac{p(x, y)}{p_{Y}(y)}
$$

1. Conditional expectation in the discrete case: $E(X \mid Y=y)=\sum_{x} x p_{X \mid Y}(x \mid y)$
2. If X and Y are joint continuous, with a joint probability density function $f(x, y)$, the conditional expectation is defined by

$$
E(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x
$$

Find $E(X \mid Y)$.
3. Denote $E[X \mid Y]$ the function of random variable Y whose value at $Y=y$ is $E[X \mid$ $Y=y] . E[X \mid Y=y]$ is itself a random variable.
4. Result: $E(X)=E(E(X \mid Y))$.
5. A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that will take him to safety after 3 hours of travel. The second door leads to a tunnel that will return him to the mine after 5 hours of travel. The third door leads to a tunnel that will return him to the mine after 7 hours. If we assume that the miner is at all times equally likely to choose any one of the doors, what is the expected length of time until he reaches safety?
Let X denote the amount of time (in hours) until the miner reaches safety, and Y denote the door he initially choose. Then $P(Y=1)=P(Y=2)=P(Y=3)=1 / 3$. Observe that

$$
\begin{aligned}
E(X)=E(E(X \mid Y)) & =E(X \mid Y=1) P(Y=1)+E(X \mid Y=2) P(Y=2)+E(X \mid Y=3) P(Y=3) \\
& =\frac{1}{3}\{E(X \mid Y=1)+E(X \mid Y=2)+E(X \mid Y=1)\} \\
& =\frac{1}{3}\{3+5+E(X)+7+E(X)\}
\end{aligned}
$$

Hence $3 E(X)=15+2 E(X)$ whence $E(X)=15$.

