Solutions

March 20, 2016

1. The information from the study is as follows:

$$
X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{r}=x_{r}, X_{r+1}>T, X_{r+2}>T, \ldots, X_{n}>T .
$$

The likelihood based on the observations is

$$
L(\theta)=\theta e^{-\theta x_{1}} \theta e^{-\theta x_{2}} \ldots \theta e^{-\theta x_{r}} e^{-\theta T} e^{-\theta T} \ldots e^{-\theta T}
$$

where the first r terms appear from the density of the exponential distribution and the next $n-r$ terms appear from the of the exponential distribution. Hence

$$
\begin{aligned}
L(\theta) & =\theta^{r} \exp \left(-\theta \sum_{i=1}^{r} x_{i}\right) \exp \{-(n-r) \theta T\} \\
& =\theta^{2} \exp \left[-\theta\left\{\sum_{i=1}^{r} x_{i}+(n-r) T\right\}\right]
\end{aligned}
$$

and the log-likelihood is

$$
l(\theta)=r \log \theta-\theta\left[\sum_{i=1}^{r} x_{i}+(n-r) T\right] .
$$

It is easy to see that the maximum of $l(\theta)$ occurs at the stationary point obtained as a solution of

$$
\frac{\partial l}{\partial \theta}=0 \Leftrightarrow \frac{r}{\theta}-\left[\sum_{i=1}^{r} x_{i}+(n-r) T\right]=0
$$

leading to

$$
\hat{\theta}=\frac{r}{\sum_{i=1}^{r} x_{i}+(n-r) T} .
$$

Emphasize in this problem that writing the likelihood is the main step
2. There can be many choices for an unbiased estimator $T(X)$. One such example can be obtained as letting $T(2)=4$ and $T(x)=0$ for $x \neq 4$. Then

$$
\mathbb{E}[T(X)]=4 \times \theta / 4=\theta
$$

Since only one data point is observed and X can take only 5 values, it is sufficient to find the MLE in these 5 cases.

$$
\begin{aligned}
\hat{\theta}(-2) & =\arg \max \quad(1-\theta) / 4=0 \\
\hat{\theta}(-1) & =\arg \max \quad \theta / 12=1 \\
\hat{\theta}(0) & =\arg \max \quad 1 / 2=\quad \text { any number in }(0,1) \\
\hat{\theta}(1) & =\arg \max \quad(3-\theta) / 12=0 \\
\hat{\theta}(2) & =\arg \max \quad \theta / 4=1 .
\end{aligned}
$$

Since $\hat{\theta}(0)$ can take multiple values, MLE is not unique when the datapoint $X=0$ is observed. To see that all the MLEs are biased, we try to solve the equation

$$
\mathbb{E}[\hat{\theta}]=1 \times \theta / 12+1 \times \theta / 4+\hat{\theta}(0) \times 1 / 2=\theta
$$

for $\hat{\theta}(0)$. Clearly, this amounts to having $\hat{\theta}(0)=4 \theta / 3$ which is impossible since $\hat{\theta}(0)$ must not depend on θ. Hence all the MLEs are biased.
3. (a) Observe that

$$
F(x, y)=1-\mathbb{P}\left(X_{1} \leq x\right)-\mathbb{P}\left(Y_{1} \leq y\right)+\mathbb{P}\left(X_{1} \leq x, Y_{1} \leq y\right)
$$

Note that $F(x, y)$ is differentiable when $x \neq y$ but not when $x=y$. When $x \neq y$, (X_{1}, Y_{1}) has density obtained using $\frac{\partial^{2} F(x, y)}{\partial x \partial y}$ as

$$
f_{\theta}(x, y)= \begin{cases}(\theta+1)(1-x)^{\theta}, & x>y \\ (\theta+1)(1-y)^{\theta}, & x<y\end{cases}
$$

Let $X=X_{1}$ and $Y=Y_{1}$, we have

$$
\begin{aligned}
\mathbb{P}(X>t, Y>t, X \neq Y) & =2 \mathbb{P}(X>t, Y>t, X>Y) \\
& =2(\theta+1) \int_{t}^{1} \int_{t}^{x}(1-x)^{\theta} d y d x \\
& =\frac{2(1-t)^{\theta+2}}{\theta+2}
\end{aligned}
$$

Also

$$
\mathbb{P}(X>t, Y>t)=(1-t)^{\theta+2}
$$

Hence

$$
\begin{aligned}
\mathbb{P}(X>t, X=Y) & =\mathbb{P}(X>t, Y>t)-\mathbb{P}(X>t, Y>t, X \neq Y) \\
& =\frac{\theta(1-t)^{\theta+1}}{\theta+2}
\end{aligned}
$$

which means (X, Y) has density $\theta(1-t)^{\theta+1}$ on the line $x=y$. Then the probability density (strictly speaking, a distribution since its not absolutely continuous with respect to the Lebesgue measure) of (X, Y) is

$$
f_{\theta}(x, y)=\left\{\begin{array}{lc}
(\theta+1)(1-x)^{\theta}, & x>y \\
(\theta+1)(1-y)^{\theta}, & x<y \\
\theta(1-x)^{\theta+1}, & x=y
\end{array}\right.
$$

(b) Let T be the number of $\left(X_{i}, Y_{i}\right.$'s with $X_{i}=Y_{i}$ and $V_{i}:=\max \left\{X_{i}, Y_{i}\right\}$, the likelihood can be re-written as

$$
L(\theta)=(\theta+1)^{(n-T)} \theta^{T} \prod_{i=1}^{n}\left(1-V_{i}\right)^{\theta} \prod_{i: X_{i}=Y_{i}}\left(1-V_{i}\right)
$$

Letting $\frac{\partial l(\theta)}{\partial \theta}=0$, we can find that the unique solution in the parameter space for θ is

$$
\hat{\theta}=\frac{\sqrt{(n-W)^{2}+4 W T}+(n-W)}{2 W}
$$

where $W=-\sum_{i=1}^{n} \log \left(1-V_{i}\right)$. Since

$$
\frac{\partial^{2} l(\theta)}{\partial \theta^{2}}=-\frac{n-T}{(\theta+1)^{2}}-\frac{T}{\theta^{2}}<0
$$

$\hat{\theta}$ is the MLE of θ.
4. (a) It is enough to show that the negative \log-likelihood function $l(\theta)=-\log \prod_{i=1}^{n} f\left(x_{i} \mid\right.$ $\theta)$ is a strictly convex function of $\theta \in \mathbb{R}^{p}$. Since its the sum of the negative likelihoods for each X_{i}, and a sum of strictly convex functions is strictly convex, it is enough to consider a single observation $n=1$. To show that the negative log likelihood is strictly convex it is enough to show that its Hessian, the matrix $H_{i j}=\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} l(\theta)$ is positive definite everywhere (except possibly at $\hat{\theta}=x$). Let's
compute the necessary derivatives:

$$
\begin{aligned}
l(\theta) & =-\log c_{\alpha}+\left(\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}\right)^{\alpha / 2} \\
\frac{\partial l(\theta)}{\partial \theta_{k}} & =-\alpha\left(\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}\right)^{(\alpha-2) / 2}\left(x_{k}-\theta_{k}\right) \\
\frac{\partial^{2} l(\theta)}{\partial \theta_{k}^{2}} & =\alpha\left(\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}\right)^{(\alpha-2) / 2}+\alpha(\alpha-2)\left(\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}\right)^{(\alpha-4) / 2}\left(x_{k}-\theta_{k}\right)^{2} \\
& =\alpha\left(\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}\right)^{(\alpha-4) / 2}\left[\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}+(\alpha-2)\left(x_{k}-\theta_{k}\right)^{2}\right] \\
\frac{\partial^{2} l(\theta)}{\partial \theta_{i} \partial \theta_{k}} & =\alpha\left(\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}\right)^{(\alpha-4) / 2}(\alpha-2)\left(x_{i}-\theta_{i}\right)\left(x_{k}-\theta_{k}\right) .
\end{aligned}
$$

The Hessian $H=\alpha\|x-\theta\|^{\alpha-4} A$ is the product of a constant positive factor $\alpha\|x-\theta\|^{\alpha-4}$ and a matrix A whose on and off diagnonal entries are:

$$
\begin{array}{r}
A_{k k}=\sum_{i=1}^{p}\left(x_{i}-\theta_{i}\right)^{2}+(\alpha-2)\left(x_{k}-\theta_{k}\right)^{2} \\
A_{k j}=(\alpha-2)\left(x_{k}-\theta_{k}\right)\left(x_{j}-\theta_{j}\right) .
\end{array}
$$

Introducing the notation $\Delta=(x-\theta) \in \mathbb{R}^{p}$ for the vector with components $\Delta_{i}=\left(x_{i}-\theta_{i}\right)$ and I_{p} for the $p \times p$ identity matrix, we can write A in the form

$$
A=\|\Delta\|^{2} I_{p}+(\alpha-2) \Delta \Delta^{\prime}
$$

The matrix A satisfies $A \Delta=\lambda \Delta$ with eigenvalue $\lambda=\|\Delta\|^{2}(\alpha-1)$, strictly positive since $\alpha>1$ (except at $\Delta=0$, i.e., $\theta=\hat{\theta}=x$, which is okay). The other eigenvectors are orthogonal to Δ, all with eigen values $\lambda^{\prime}=\|\Delta\|^{2}$, which are also strictly positive. Thus A is a positive definite matrix and so is the Hessian, $H=\alpha\|\Delta\|^{\alpha-4} A$.
(b) First consider the case where $\alpha=1$ in dimension $p=1$, with $n=2 m$ even. Without loss of generality, order the data $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. The log likelihood function is given by

$$
l(\theta)=n \log c(\alpha)-\sum\left|x_{i}-\theta\right|,
$$

continuous function whose derivative does not exist at the data points $\theta \in$
$\left\{x_{1}, \ldots, x_{n}\right\}$, and which elsewhere satisfies

$$
\begin{aligned}
\frac{d}{d \theta} l(\theta) & =-\sum \frac{d}{d \theta}\left|x_{i}-\theta\right| \\
& =\left[\sum_{i: x_{i}<\theta}(-1)\right]+\left[\sum_{i: x_{i}>\theta}(+1)\right] .
\end{aligned}
$$

Note that the derivative of $|x-\theta|$ is -1 on the interval $\theta \in(-\infty, x), 1$ on the interval $\theta \in(x, \infty)$, and undefined at the point $\theta=x)$. Thus $l(\theta)$ is increasing when $\theta<x_{m}$, when more than half the $\left\{x_{i}\right\}$ exceed θ, and is decreasing when $\theta>$ x_{m+1}, when fewer than half the $\left\{x_{i}\right\}$ exceed θ. In the interval $x_{m}<\theta<x_{m+1}$, the derivative is zero, so $l(\theta)$ is constant there and equal to its maximum value. In case $n=2 m-1$ is odd, the same argument shows that $l(\theta)$ achieves a unique maximum at the median x_{m}. In dimension $p>2$ a similar argument holds, only $\hat{\theta}$ now should be any value in the "median rectangle" (or "median block") where each of its components is a median of the corresponding components of the x_{i} 's.

