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1. The information from the study is as follows:

X1 = x1, X2 = x2, . . . , Xr = xr, Xr+1 > T,Xr+2 > T, . . . ,Xn > T.

The likelihood based on the observations is

L(θ) = θe−θx1θe−θx2 . . . θe−θxre−θT e−θT . . . e−θT

where the first r terms appear from the density of the exponential distribution and
the next n− r terms appear from the of the exponential distribution. Hence

L(θ) = θr exp

(
− θ

r∑
i=1

xi

)
exp{−(n− r)θT}

= θ2 exp

[
− θ
{ r∑
i=1

xi + (n− r)T
}]

and the log-likelihood is

l(θ) = r log θ − θ
[ r∑
i=1

xi + (n− r)T
]
.

It is easy to see that the maximum of l(θ) occurs at the stationary point obtained as
a solution of

∂l

∂θ
= 0⇔ r

θ
−
[ r∑
i=1

xi + (n− r)T
]

= 0

leading to

θ̂ =
r∑r

i=1 xi + (n− r)T
.

Emphasize in this problem that writing the likelihood is the main step

2. There can be many choices for an unbiased estimator T (X). One such example can
be obtained as letting T (2) = 4 and T (x) = 0 for x 6= 4. Then

E[T (X)] = 4× θ/4 = θ.
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Since only one data point is observed and X can take only 5 values, it is sufficient to
find the MLE in these 5 cases.

θ̂(−2) = arg max (1− θ)/4 = 0

θ̂(−1) = arg max θ/12 = 1

θ̂(0) = arg max 1/2 = any number in (0, 1)

θ̂(1) = arg max (3− θ)/12 = 0

θ̂(2) = arg max θ/4 = 1.

Since θ̂(0) can take multiple values, MLE is not unique when the datapoint X = 0 is
observed. To see that all the MLEs are biased, we try to solve the equation

E[θ̂] = 1× θ/12 + 1× θ/4 + θ̂(0)× 1/2 = θ

for θ̂(0). Clearly, this amounts to having θ̂(0) = 4θ/3 which is impossible since θ̂(0)
must not depend on θ. Hence all the MLEs are biased.

3. (a) Observe that

F (x, y) = 1− P(X1 ≤ x)− P(Y1 ≤ y) + P(X1 ≤ x, Y1 ≤ y).

Note that F (x, y) is differentiable when x 6= y but not when x = y. When x 6= y,

(X1, Y1) has density obtained using ∂2F (x,y)
∂x∂y as

fθ(x, y) =

{
(θ + 1)(1− x)θ, x > y

(θ + 1)(1− y)θ, x < y

Let X = X1 and Y = Y1, we have

P(X > t, Y > t,X 6= Y ) = 2P(X > t, Y > t,X > Y )

= 2(θ + 1)

∫ 1

t

∫ x

t
(1− x)θdydx

=
2(1− t)θ+2

θ + 2
.

Also

P(X > t, Y > t) = (1− t)θ+2.

Hence

P(X > t,X = Y ) = P(X > t, Y > t)− P(X > t, Y > t,X 6= Y )

=
θ(1− t)θ+1

θ + 2
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which means (X,Y ) has density θ(1 − t)θ+1 on the line x = y. Then the
probability density (strictly speaking, a distribution since its not absolutely
continuous with respect to the Lebesgue measure) of (X,Y ) is

fθ(x, y) =


(θ + 1)(1− x)θ, x > y

(θ + 1)(1− y)θ, x < y

θ(1− x)θ+1, x = y.

(b) Let T be the number of (Xi, Yi)’s with Xi = Yi and Vi := max{Xi, Yi}, the
likelihood can be re-written as

L(θ) = (θ + 1)(n−T )θT
n∏
i=1

(1− Vi)θ
∏

i:Xi=Yi

(1− Vi).

Letting ∂l(θ)
∂θ = 0, we can find that the unique solution in the parameter space

for θ is

θ̂ =

√
(n−W )2 + 4WT + (n−W )

2W
,

where W = −
∑n

i=1 log(1− Vi). Since

∂2l(θ)

∂θ2
= − n− T

(θ + 1)2
− T

θ2
< 0

θ̂ is the MLE of θ.

4. (a) It is enough to show that the negative log-likelihood function l(θ) = − log
∏n
i=1 f(xi |

θ) is a strictly convex function of θ ∈ Rp. Since its the sum of the negative like-
lihoods for each Xi, and a sum of strictly convex functions is strictly convex, it
is enough to consider a single observation n = 1. To show that the negative log
likelihood is strictly convex it is enough to show that its Hessian, the matrix
Hij = ∂2

∂θi∂θj
l(θ) is positive definite everywhere (except possibly at θ̂ = x). Let’s
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compute the necessary derivatives:

l(θ) = − log cα +

( p∑
i=1

(xi − θi)2
)α/2

∂l(θ)

∂θk
= −α

( p∑
i=1

(xi − θi)2
)(α−2)/2

(xk − θk)

∂2l(θ)

∂θ2k
= α

( p∑
i=1

(xi − θi)2
)(α−2)/2

+ α(α− 2)

( p∑
i=1

(xi − θi)2
)(α−4)/2

(xk − θk)2

= α

( p∑
i=1

(xi − θi)2
)(α−4)/2[ p∑

i=1

(xi − θi)2 + (α− 2)(xk − θk)2
]

∂2l(θ)

∂θi∂θk
= α

( p∑
i=1

(xi − θi)2
)(α−4)/2

(α− 2)(xi − θi)(xk − θk).

The Hessian H = α ‖x− θ‖α−4A is the product of a constant positive factor
α ‖x− θ‖α−4 and a matrix A whose on and off diagnonal entries are:

Akk =

p∑
i=1

(xi − θi)2 + (α− 2)(xk − θk)2

Akj = (α− 2)(xk − θk)(xj − θj).

Introducing the notation ∆ = (x − θ) ∈ Rp for the vector with components
∆i = (xi − θi) and Ip for the p× p identity matrix, we can write A in the form

A = ‖∆‖2 Ip + (α− 2)∆∆′.

The matrix A satisfies A∆ = λ∆ with eigenvalue λ = ‖∆‖2 (α − 1), strictly
positive since α > 1 (except at ∆ = 0, i.e., θ = θ̂ = x, which is okay). The other
eigenvectors are orthogonal to ∆, all with eigen values λ′ = ‖∆‖2, which are
also strictly positive. Thus A is a positive definite matrix and so is the Hessian,
H = α ‖∆‖α−4A.

(b) First consider the case where α = 1 in dimension p = 1, with n = 2m even.
Without loss of generality, order the data x1 ≤ x2 ≤ · · · ≤ xn. The log likelihood
function is given by

l(θ) = n log c(α)−
∑
|xi − θ| ,

continuous function whose derivative does not exist at the data points θ ∈
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{x1, . . . , xn}, and which elsewhere satisfies

d

dθ
l(θ) = −

∑ d

dθ
|xi − θ|

=

[ ∑
i:xi<θ

(−1)

]
+

[ ∑
i:xi>θ

(+1)

]
.

Note that the derivative of |x− θ| is −1 on the interval θ ∈ (−∞, x), 1 on the
interval θ ∈ (x,∞), and undefined at the point θ = x). Thus l(θ) is increasing
when θ < xm, when more than half the {xi} exceed θ, and is decreasing when θ >
xm+1, when fewer than half the {xi} exceed θ. In the interval xm < θ < xm+1,
the derivative is zero, so l(θ) is constant there and equal to its maximum value.
In case n = 2m−1 is odd, the same argument shows that l(θ) achieves a unique
maximum at the median xm. In dimension p > 2 a similar argument holds, only
θ̂ now should be any value in the “median rectangle” (or “median block”) where
each of its components is a median of the corresponding components of the xi’s.
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