
Chapter 4

The Maximum Likelihood Estimator

4.1 The Maximum likelihood estimator

As illustrated in the exponential family of distributions, discussed above, the maximum likeli-

hood estimator of θ0 (the true parameter) is defined as

θ̂T = argmax
θ∈Θ

LT (X; θ) = argmax
θ∈Θ

LT (θ).

Often we find that ∂LT (θ)
∂θ ⌋θ=θ̂T = 0, hence solution can be obtained by solving the derivative

of the log likelihood (often called the score function). However, if θ0 lies on or close to the

boundary of the parameter space this will not necessarily be true.

Below we consider the sampling properties of θ̂T when the true parameter θ0 lies in the

interior of the parameter space Θ.

We note that the likelihood is invariant to transformations of the data. For example if X

has the density f(·; θ) and we define the transformed random variable Z = g(X), where the

function g has an inverse (its a 1-1 transformation), then it is easy to show that the density of

Z is f(g−1(z); θ)∂g
−1(z)
∂z . Therefore the likelihood of {Zt = g(Xt)} is

T∏

t=1

f(g−1(Zt); θ)
∂g−1(z)

∂z
⌋z=Zt =

T∏

t=1

f(Xt; θ)
∂g−1(z)

∂z
⌋z=Zt .

Hence it is proportional to the likelihood of {Xt} and the maximum of the likelihood of {Zt =

g(Xt)} is the same as the maximum of the likelihood of {Xt}.
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4.1.1 Evaluating the MLE

Examples

Example 4.1.1 {Xt} are iid random variables, which follow a Normal (Gaussian) distribution

N (µ,σ2). The likelihood is proportional to

LT (X;µ,σ2) = −T log σ − 1

2σ2

T∑

t=1

(Xt − µ)2.

Maximising the above with respect to µ and σ2 gives µ̂T = X̄ and σ̂2 = 1
T

∑T
t=1(Xt − X̄)2.

Example 4.1.2 Question:

{Xt} are iid random variables, which follow a Weibull distribution, which has the density

αyα−1

θα
exp(−(y/θ)α) θ,α > 0.

Suppose that α is known, but θ is unknown (and we need to estimate it). What is the

maximum likelihood estimator of θ?

Solution:

The log-likelihood (of interest) is proportional to

LT (X; θ) =
T∑

t=1

(
logα+ (α− 1) log Yt − α log θ −

(Yt
θ

)α
)

∝
T∑

t=1

(
− α log θ −

(Yt
θ

)α
.

)
.

The derivative of the log-likelihood wrt to θ is

∂LT

∂θ
= −Tα

θ
+

α

θα+1

T∑

t=1

Y α
t = 0.

Solving the above gives θ̂T = ( 1
T

∑T
t=1 Y

α
t )1/α.

Example 4.1.3 Notice that if α is given, an explicit solution for the maximum of the likelihood,

in the above example, can be obtained. Consider instead the maximum of the likelihood with

respect to α and θ, ie.

argmax
θ,α

T∑

t=1

(
logα+ (α− 1) log Yt − α log θ −

(Yt
θ

)α
)
.

22



The derivative of the likelihood is

∂LT

∂θ
= −Tα

θ
+

α

θα+1

T∑

t=1

Y α
t = 0

∂LT

∂α
=

T

α
−

T∑

t=1

log Yt − T log θ − Tα

θ
+

T∑

t=1

log(
Yt
θ
)× (

Yt
θ
)α = 0.

It is clear that an explicit expression to the solution of the above does not exist and we need

to find alternative methods for finding a solution. Below we shall describe numerical routines

which can be used in the maximisation. In special cases, one can use other methods, such as the

Profile likelihood (we cover this later on).

Numerical Routines

In an ideal world to maximise a likelihood, we would consider the derivative of the likelihood

and solve it (∂LT (θ)
∂θ ⌋θ=θ̂T = 0), and an explicit expression would exist for this solution. In reality

this rarely happens (as we illustrated in the section above).

Usually, we will be unable to obtain an explicit expression for the MLE. In such cases,

one has to do the maximisation using alternative, numerical methods. Typically it is relative

straightforward to maximise the likelihood of random variables which belong to the exponential

family (numerical algorithms sometimes have to be used, but they tend to be fast and attain

the maximum of the likelihood - not just the local maximum). However, the story becomes

more complicated even if we consider mixtures of exponential family distributions - these do not

belong to the exponential family, and can be difficult to maximise using conventional numerical

routines. We give an example of such a distribution here. Let us suppose that {Xt} are iid

random variables which follow the classical normal mixture distribution

f(y; θ) = pf1(y; θ1) + (1− p)f2(y; θ2),

where f1 is the density of the normal with mean µ1 and variance σ21 and f2 is the density of the

normal with mean µ2 and variance σ22. The log likelihood is

LT (Y ; θ) =
T∑

t=1

log

(
p

1√
2πσ21

exp(− 1

2σ21
(Xt − µ1)

2) + (1− p)
1√
2πσ22

exp(− 1

2σ22
(Xt − µ2)

2)

)
.

Studying the above it is clear there does not explicit solution to the maximum. Hence one needs

to use a numerical algorithm to maximise the above likelihood.

We discuss a few such methods below.
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The Newton Raphson Routine The Newton-Raphson routine is the standard method

to numerically maximise the likelihood, this can often be done automatically in R by

using the R functions optim or nlm. To apply Newton-Raphson, we have to assume that

the derivative of the likelihood exists (this is not always the case - think about the ℓ1-

norm based estimators!) and the minimum lies inside the parameter space such that
∂LT (θ)
∂θ ⌋θ=θ̂T = 0. We choose an initial value θ1 and apply the routine

θn = θn−1 +

(
∂2LT (θ)

∂θ2
⌋θn−1

)−1∂LT (θn−1)

∂θ
⌋θn−1 .

Where this routine comes from will be clear by using the Taylor expansion of ∂LT (θn−1)
∂θ

about θ0 (see Section 4.1.3). If the likelihood has just one global maximum and no local

maximums (hence it is convex), then it is quite easy to maximise. If on the other hand,

the likelihood has a few local maximums and the initial value θ1 is not chosen close enough

to the true maximum, then the routine may converge to a local maximum (not good!). In

this case it may be a good idea to do the routine several times for several different initial

values θ(i)1 . For each convergence value θ̂(i)T evaluate the likelihood LT (θ̂
(i)
T ) and select the

value which gives the largest likelihood. It is best to avoid these problems by starting with

an informed choice of initial value.

Implementing without any thought a Newton-Rapshon routine can lead to estimators

which take an incredibly long time to converge. If one carefully considers the likelihood

one can shorten the convergence time by rewriting the likelihood and using faster methods

(often based on the Newton-Raphson).

Iterative least squares This is a method that we shall describe later when we consider

Generalised linear models. As the name suggests the algorithm has to be interated, however

at each step weighted least squares is implemented (see later in the course).

The EM-algorithm This is done by the introduction of dummy variables, which leads

to a new ‘unobserved’ likelihood which can easily be maximised. In fact one the simplest

methods of maximising the likelihood of mixture distributions is to use the EM-algorithm.

We cover this later in the course.

See Example 4.23 on page 117 in Davison (2002).

The likelihood for dependent data

We mention that the likelihood for dependent data can also be constructed (though often the

estimation and the asymptotic properties can be a lot harder to derive). Using Bayes rule (ie.
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P (A1, A2, . . . , AT ) = P (A1)
∏T

i=2 P (Ai|Ai−1, . . . , A1)) we have

LT (X; θ) = f(X1; θ)
T∏

t=2

f(Xt|Xt−1, . . . , X1; θ).

Under certain conditions on {Xt} the structure above
∏T

t=2 f(Xt|Xt−1, . . . , X1; θ) can be simpli-

fied. For example if Xt were Markovian then we have Xt conditioned on the past on depends the

most recent past observation, ie. f(Xt|Xt−1, . . . , X1; θ) = f(Xt|Xt−1; θ) in this case the above

likelihood reduces to

LT (X; θ) = f(X1; θ)
n∏

t=2

f(Xt|Xt−1; θ). (4.1)

Example 4.1.4 A lot of the material we will cover in this class will be for independent obser-

vations. However likelihood methods can also work for dependent observations too. Consider the

AR(1) time series

Xt = aXt−1 + εt,

where εt are iid random variables with mean zero. We will assume that |a| < 1.

We see from the above that the observation Xt−1 as a linear influence on the next observation

and it is Markovian, that it given Xt−1, the random variable Xt−2 has no influence on Xt (to

see this consider the distribution function P (Xt ≤ x|Xt−1, Xt−2)). Therefore by using (4.1) the

likelihood of {Xt}t is

LT (X; a) = f(X1; a)
T∏

t=2

fε(Xt − aXt−1), (4.2)

where fε is the density of ε and f(X1; a) is the marginal density of X1. This means the likelihood

of {Xt} only depends on fε and the marginal density of Xt. We use âT = argmaxLT (X; a) as

the mle estimator of a.

Often we ignore the term f(X1; a) (because this is often hard to know - try and figure it out

- its relatively easy in the Gaussian case) and consider what is called the conditional likelihood

QT (X; a) =
T∏

t=2

fε(Xt − aXt−1). (4.3)

ãT = argmaxLT (X; a) as the quasi-mle estimator of a.

Exercise: What is the quasi-likelihood proportional to in the case that {εt} are Gaussian

random variables with mean zero. It should be mentioned that often the conditional likelihood

is derived as if the errors {εt} are Gaussian - even if they are not. This is often called the

quasi or pseudo likelihood.
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4.1.2 A quick review of the central limit theorem

In this section we will not endeavour to proof the central limit theorem (which is usually based

on showing that the characteristic function - a close cousin of the moment generating function

- of the average converges to the characteristic function of the normal distribution). However,

we will recall the general statement of the CLT and generalisations of it. The purpose of this

section is not to lumber you with unnecessary mathematics but to help you understand when

an estimator is close to normal (or not).

Lemma 4.1.1 (The famous CLT) Let us suppose that {Xt} are iid random variables, let

µ = E(Xt) < ∞ and σ2 = var(Xt) < ∞. Define X̄ = 1
T

∑T
t=1Xt. Then we have

√
T (X̄ − µ)

D→ N (0,σ2),

alternatively (X̄ − µ)
D→ N (0, σ

2

T ).

What this means that if we have a large enough sample size and plotted the histogram of

several replications of the average, this should be close to normal.

Remark 4.1.1 (i) The above lemma appears to be ‘restricted’ to just averages. However, it

can be used in several different contexts. Averages arise in several different situations. It is

not just restricted to the average of the observations. By judicious algebraic manipulations,

one can show that several estimators can be rewritten as an average (or approximately as

an average). At first appearance, the MLE of the Weibull parameters given in Example

4.1.3) does not look like an average, however, in the section we will consider the general

maximum likelihood estimators, and show that they can be rewritten as an average hence

the CLT applies to them too.

(ii) The CLT can be extended in several ways.

(a) To random variables whose variance are not all the same (ie. indepedent but identi-

cally distributed random variables).

(b) Dependent random variables (so long as the dependency ‘decays’ in some way).

(c) To not just averages but weighted averages too (so long as the weight depends in

certain way). However, the weights should be ‘distributed well’ over all the random

variables. Ie. suppose that {Xt} are iid random variables. Then it is clear that
1
10

∑10
t=1Xt will never be normal (unless {Xt} is normal - observe 10 is fixed!), but it

seems plausible that 1
n

∑n
t=1 sin(2πt/12)Xt is normal (despite this not being the sum

of iid random variables).
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• There exists several theorems which one can use to prove normality. But really the take

home message is, look at your estimator and see whether asymptotic normality it looks

plausible - you could even check it through simulations.

Example 4.1.5 (Some problem cases) One should think a little before blindly applying the

CLT. Suppose that the iid random variables {Xt} follow a t-distribution with 2 degrees of freedom,

ie. the density function is

f(x) =
Γ(3/2)√

2π
(1 +

x2

2
)−3/2.

Let X̄ = 1
n

∑n
t=1Xt denote the sample mean. It is well known that the mean of the t-distribution

with two degrees of freedom exists, but the variance does not (it is too thick tailed). Thus, the

assumptions required for the CLT to hold are violated and X̄ is not normally distributed (in fact

it follows a stable law distribution). Intuitively this is clear, recall that the chance of outliers for

a t-distribution with a small number of degrees of freedom, if large. This makes it impossible

that even averages should be ‘well behaved’ (there is a large chance that an average could also be

too large or too small).

To see why the variance is infinite, study the form of t-distribution (with two degrees). For

the variance to be finite, the tails of the distribution should converge to zero fast enough (in other

words the probability of outliers should not be too large). See that the tails of the t-distribution

(for large x) behaves like f(x) ∼ Cx−3 (make a plot in Maple to check), thus the second moment

E(X2) ≥
∫∞
M Cx−3x2dx =

∫∞
M Cx−1dx (for some C and M), is clearly not finite! This argument

can be made precise.

4.1.3 The Taylor series expansion - the statisticians tool

The Taylor series is used all over the place in statistics and you should be completely fluent

with using it. It can be used to prove consistency of an estimator, normality (based on the

assumption that averages converge to a normal distribution), obtaining the limiting variance of

an estimator etc. We start by demonstrating its use for the log likelihood.

We recall that the mean value (in the univariate case) states that

f(x) = f(x0) + (x− x0)f
′(x̄1) f(x) = f(x0) + (x− x0)f

′(x0) +
(x− x0)2

2
f ′′(x̄2),

where x̄1 and x̄2 both lie between x and x0. In the case that f is a multivariate function, then

we have

f(x) = f(x0) + (x− x0)∇f(x)⌋x=x̄1

f(x) = f(x0) + (x− x0)
′∇f(x)⌋x=x0

+
1

2
(x− x0)

′∇2f(x)⌋x=x̄2
(x− x0),
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where x̄1 and x̄2 both lie between x and x0. In the case that f(x) is a vector, then the mean

value theorem does not directly work. Strictly speaking we cannot say that

f(x) = f(x0) + (x− x0)
′∇f(x)⌋x=x̄1

,

where x̄1 lies between x and x0. However, it is quite straightforward to overcome this in-

convience. The mean value theorem does hold pointwise, for every element of the vector

f(x) = (f1(x), . . . , fd(x)), ie. for every 1 ≤ i ≤ d we have

fi(x) = fi(x0) + (x− x0)∇fi(x)⌋x=x̄i
,

where x̄i lies between x and x0. Thus if ∇fi(x)⌋x=x̄i
→ ∇fi(x)⌋x=x0

, we do have that

f(x) ≈ f(x0) + (x− x0)
′∇f(x)⌋x=x0

.

We use the above below.

• Application 1 (An expression for LT (θ̂T )− LT (θ0) in terms of (θ̂T − θ0)):

The expansion of LT (θ̂T ) about θ0 (the true parameter)

LT (θ0)− LT (θ̂T ) =
∂LT (θ)

∂θ
⌋θ̂T (θ0 − θ̂T ) +

1

2
(θ0 − θ̂T )

′∂
2LT (θ)

∂θ2
⌋θ̄T (θ0 − θ̂T )

where θ̄T lies between θ0 and θ̂T . If θ̂T lies in the interior of the parameter space (this

is an extremely important assumption here) then ∂LT (θ)
∂θ ⌋θ̂T = 0. Moreover, if it can

be shown that |θ̂T − θ0|
P→ 0 (we show this in the section below), then under certain

conditions on ∂LT (θ)
∂θ (such as the existence of the third derivative etc.) it can be shown

that ∂2LT (θ)
∂θ2 ⌋θ̄T

P→ E(∂
2LT (θ)
∂θ2 ⌋θ0) = I(θ0). Hence the above is roughly

2(LT (θ̂T )− LT (θ0)) ≈ (θ̂T − θ0)
′I(θ0)(θ̂T − θ0)

Note that in many of the derivations below we will use that

∂2LT (θ)

∂θ2
⌋θ̄T

P→ E(
∂2LT (θ)

∂θ2
⌋θ0
)
= −I(θ0).

But it should be noted that this only true if (i) |θ̂T − θ0|
P→ 0 and (ii) ∂2LT (θ)

∂θ2 converges

uniformly to E(∂
2LT (θ)
∂θ2 ⌋θ0

)
.

We consider below another closely related application.
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• Application 2 (An expression for (θ̂T − θ0) in terms of ∂LT (θ)
∂θ ⌋θ0):

The expansion of the p-dimension vector ∂LT (θ)
∂θ ⌋θ̂T pointwise about θ0 (the true parameter)

gives (for 1 ≤ i ≤ d)

∂Li,T (θ)

∂θ
⌋θ̂T =

∂Li,T (θ)

∂θ
⌋θ0 +

∂Li,T (θ)

∂θ
⌋θ̄T (θ̂T − θ0).

Now by using the same argument as in Application 1 we have

∂LT (θ)

∂θ
⌋θ0 ≈ I(θ0)(θ̂T − θ0).

We mention that UT (θ0) = ∂LT (θ)
∂θ ⌋θ0 is often called the score or U statistic. And we

see that the asymptotic sampling properties of UT determine the sampling properties of

(θ̂T − θ0).

Example 4.1.6 (The Weibull) Evaluate the second derivative of the likelihood given in Ex-

ample 4.1.3, take the expection on this, I(θ,α) = E(∇2LT ) (we use the ∇ to denote the second

derivative with respect to the parameters α and θ). Exercise: Evaluate I(θ,α).

Application 2 implies that the maximum likelihood estimators θ̂T and α̂T (recalling that no

explicit expression for them exists) can be written as

(
θ̂T − θ

α̂T − α

)

≈ I(θ,α)−1

⎛

⎜⎜⎝

∑T
t=1

(
− α

θ + α
θα+1Y α

t

)

∑T
t=1

(
1
α − log Yt − log θ − α

θ + log(Yt
θ )× (Yt

θ )
α

)

⎞

⎟⎟⎠

4.1.4 Sampling properties of the maximum likelihood estimator

See also Section 4.4.2 (p118), Davison (2002). These proofs will not be examined, but you should

have some idea why Theorem 4.1.2 is true.

We have shown that under certain conditions the maximum likelihood estimator can often

be the minimum variance unbiased estimator (for example, in the case of exponential family

of distributions). However, for finite samples, the mle may not attain the C-R lower bound.

Hence for finite sample var(θ̂T ) > I(θ)−1. However, it can be shown that asymptotically the

variance of the mle attains the mle lower bound. In other words, for large samples, the variance

of the mle is close to the Cramer-Rao bound. We will prove the result in the case that ℓT is

the log likelihood of independent, identically distributed random variables. The proof can be

generalised to the case of non-identically distributed random variables.

We first state sufficient conditions for this to be true.

Assumption 4.1.1 [Regularity Conditions 2] Let {Xt} be iid random variables with density

f(X; θ).
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(i) Suppose the conditions in Assumption 1.1.1 hold.

(ii) Almost sure uniform convergence (This is optional)

For every ε > 0 there exists a δ such that

P

(
lim
T→∞

sup
|θ1−θ2|>δ

∣∣ 1
T
LT (X; θ)− E(LT (θ))

∣∣ > ε

)
→ 0.

We mention that directly verifying uniform convergence can be difficult. However, it can

be established by showing that the parameter space is compact, point wise convergence of

the likelihood to its expectation and almost sure equicontinuity in probability.

(iii) Model identifiability

For every θ ∈ Θ, there does not exist another θ̃ ∈ Θ such that f(x; θ) = f(x; θ̃) for all x.

(iv) The parameter space Θ is finite and compact.

(v) supE| 1T
∂LT (X;θ)

∂θ | < ∞.

We require Assumption 4.1.1(ii,iii) to show consistency and Assumptions 1.1.1 and 4.1.1(iii-

v) to show asymptotic normality.

Theorem 4.1.1 Supppose Assumption 4.1.1(ii,iii) holds. Let θ0 be the true parameter and θ̂T

be the mle. Then we have θ̂T
a.s.→ θ0 (consistency).

PROOF. To prove the result we first need to show that the expectation of the maximum likeli-

hood is maximum at the true parameter and that this is the unique maximum. In other words

we need to show that E( 1
T LT (X; θ))− E( 1

T LT (X; θ0)) ≤ 0 for all θ ∈ Θ. To do this, we have

E(
1

T
LT (X; θ))− E(

1

T
LT (X; θ0)) =

∫
log

f(x; θ)

f(x; θ0)
f(x; θ0)dx

= E
(
log

f(X; θ)

f(X; θ0)

)
.

Now by using Jensen’s inequality we have

E
(
log

f(X; θ)

f(X; θ0)

)
≤ logE

( f(X; θ)

f(X; θ0)

)
= log

∫
f(x; θ)dx = 0.

Thus giving E( 1
T LT (X; θ))−E( 1

T LT (X; θ0)) ≤ 0. To prove that E( 1
T LT (X; θ))−E( 1

T LT (X; θ0)) =

0 only when θ0 we note that identifiability assumption in Assumption 4.1.1(iii), which means

that f(x; θ) = f(x; θ0) only when θ0 and no other function of f gives equality.
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Hence E( 1
T LT (X; θ)) is uniquely maximum at θ0. Finally, we need to show that θ̂T

P→ θ0.

By Assumption 4.1.1(ii) (and also the LLN) we have that for all θ ∈ Θ that 1
T LT (X; θ)

a.s.→ ℓ(θ).

Therefore, for every mle θ̂T we have

1

T
LT (X; θ0) ≤

1

T
LT (X; θ̂T )

a.s.→ E(
1

T
LT (X; θ̂T )) ≤ E(

1

T
LT (X; θ0)) (4.4)

To bound |E( 1
T LT (X; θ0))− 1

T LT (X; θ̂T )| we note that

E(
1

T
LT (X; θ0))−

1

T
LT (X; θ̂T ) =

{
E(

1

T
LT (X; θ0))−

1

T
LT (X; θ0)

}
+

{
E(

1

T
LT (X; θ̂T ))−

1

T
LT (X; θ̂T )

}
+
{ 1
T
LT (X; θ0)− E(

1

T
LT (X; θ̂T ))

}
.

Now by using (4.4) we have

E(
1

T
LT (X; θ0))−

1

T
LT (X; θ̂T ) ≤

{
E(

1

T
LT (X; θ0))−

1

T
LT (X; θ0)

}
+

{
E(

1

T
LT (X; θ̂T ))−

1

T
LT (X; θ̂T ))

}
+
{
E(

1

T
LT (X; θ̂T ))−

1

T
LT (X; θ̂T ))

}

and

E(
1

T
LT (X; θ0)))−

1

T
LT (X; θ̂T ) ≥

{
E(

1

T
LT (X; θ0)))−

1

T
LT (X; θ0)

}
+

{
E(

1

T
LT (X; θ̂T ))−

1

T
LT (X; θ̂T )

}
+
{
E(

1

T
LT (X; θ0))−

1

T
LT (X; θ0)

}
.

Therefore, under Assumption 4.1.1(ii) we have

|E( 1
T
LT (X; θ0))−

1

T
LT (X; θ̂T )| ≤ 3 sup

θ∈Θ
|E( 1

T
LT (X; θ))− 1

T
LT (X; θ)| a.s.→ 0.

Since LT (θ) has a unique minimum this implies θ̂T
a.s.→ θ0. !

Hence we have shown consistency of the mle. We now need to show asymptotic normality.

Theorem 4.1.2 Suppose Assumption 4.1.1 is satisfied.

(i) Then the score statistic is

1√
T

∂LT (X; θ)

∂θ
⌋θ0

D→ N
(
0,

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2})

. (4.5)

(ii) Then the mle is

√
T
(
θ̂T − θ0

) D→ N
(
0,

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}−1)

.

31



(iii) The log likelihood ratio is

2

(
LT (X; θ̂T )− LT (X; θ0)

)
D→ χ2

p

PROOF. First we will prove (i). We recall because {Xt} are iid random variables, then

1√
T

∂LT (X; θ)

∂θ
⌋θ0 =

1√
T

T∑

t=1

∂ log f(Xt; θ)

∂θ
⌋θ0 .

Hence ∂LT (X;θ)
∂θ ⌋θ0 is the sum of iid random variables with mean zero and variance var(∂ log f(Xt;θ)

∂θ ⌋θ0).
Therefore, by the CLT for iid random variables we have (4.5).

We use (i) and Taylor (mean value) theorem to prove (ii). We first note that by the mean

value theorem we have

1

T

∂LT (X; θ)

∂θ
⌋θ̂T =

1

T

∂LT (X; θ)

∂θ
⌋θ0 + (θ̂T − θ0)

1

T

∂2LT (X; θ)

∂θ2
⌋θ̄T . (4.6)

Now it can be shown because Θ has a compact support, |θ̂T − θ0|
a.s.→ 0 and the expectations of

the third derivative of LT is bounded that

1

T

∂2LT (X; θ)

∂θ2
⌋θ̄T

P→ 1

T
E

(
∂2LT (X; θ)

∂θ2
⌋θ0
)

= E

(
∂2 log f(X; θ)

∂θ2
⌋θ0
)
. (4.7)

Substituting (4.7) into (4.6) gives

√
T (θ̂T − θ0) =

(
1

T

∂2LT (X; θ)

∂θ2
⌋θ̄T

)−1 1√
T

∂LT (X; θ)

∂θ
⌋θ0

= E

(
1

T

∂2LT (X; θ)

∂θ2
⌋θ0
)−1 1√

T

∂LT (X; θ)

∂θ
⌋θ0 + op(1).

We mention that the proof above is for univariate ∂2LT (X;θ)
∂θ2 ⌋θ̄T , but by redo-ing the above steps

pointwise it can easily be generalised to the multivariate case too. Hence by substituting the

(4.5) into the above we have (ii). It is straightfoward to prove (iii) by using

2

(
LT (X; θ̂T )− LT (X; θ0)

)
≈ (θ̂T − θ0)

′I(θ0)(θ̂T − θ0)
′,

(i) and the result that if X ∼ N (0,Σ), then AX ∼ N (0, A′ΣA). !

Example 4.1.7 (The Weibull) By using Example 4.1.6 we have

(
θ̂T − θ

α̂T − α

)

≈ I(θ,α)−1

⎛

⎜⎜⎝

∑T
t=1

(
− α

θ + α
θα+1Y α

t

)

∑T
t=1

(
1
α − log Yt − log θ − α

θ + log(Yt
θ )× (Yt

θ )
α

)

⎞

⎟⎟⎠ .
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Now we observe that RHS consists of a sum iid random variables (this can be viewed as an

average). Since the variance of this exists (you can show that it is I(θ,α)), the CLT can be

applied and we have that

(
θ̂T − θ

α̂T − α

)
D→ N

(
0, I(θ,α)−1

)
.

Remark 4.1.2 (i) We recall that for iid random variables that the Fisher information for

sample size T is

I(θ) = E

{
∂ logLT (X; θ)

∂θ
⌋θ0
}2

= TE

(
∂ log f(X; θ)

∂θ
⌋θ0
)2

.

Hence comparing with the above theorem, we see that for iid random variables (so long as

the regularity conditions are satisfied) the MLE, asympotitically, attains the Cramer-Rao

bound even if for finite samples this may not be true.

Moreover, since

(θ̂T − θ0) ≈ I(θ0)
−1∂LT (θ)

∂θ
⌋θ0 = (T−1I(θ0))

−1 1

T

∂LT (θ)

∂θ
⌋θ0 ,

and var
(

1√
T

∂LT (θ)
∂θ ⌋θ0

)
= 1

T I(θ0), then it can be seen that |θ̂T − θ0| = Op(T−1/2).

(ii) Under suitable conditions a similar result holds true for data which is not iid.

In summary, the MLE (under certain regularity conditions) tend to have the smallest vari-

ance, and for large samples, the variance is close to the lower bound, which is the Cramer-Rao

bound.

In the case that Assumption 4.1.1 is satisfied, the MLE is said to be asymptotically efficient.

This means for finite samples the MLE may not attain the C-R bound but asymptotically it will.

(iii) A simple application of Theorem 4.1.2 is to the derivation of the distribution of I(θ0)1/2(θ̂T−
θ0). It is clear that by using Theorem 4.1.2 we have

I(θ0)
1/2(θ̂T − θ0)

D→ N (0, Ip)

(where Ip is the identity matrix) and

(θ̂T − θ0)
′I(θ0)(θ̂T − θ0)

D→ χ2
p.

(iv) Note that these results apply when θ0 lies inside the parameter space Θ. As θ gets closer to

the boundary of the parameter space
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Remark 4.1.3 (Generalised estimating equations) Closely related to the MLE are gener-

alised estimating equations GEE, which are relate to the score statistic. These are estimators

not based on maximising the likelihood but are related to equating the score statistic (derivative

of the likelihood) to zero and solving for the unknown parameters. Often they are equivalent to

the MLE but they can be adapted to be useful in themselves (and some adaptions will not be the

derivative of a likelihood).

4.1.5 The Fisher information

See also Section 4.3, Davison (2002).

Let us return to the Fisher information. We recall that undercertain regularity conditions

an unbiased estimator, θ̃(X), of a parameter θ0 is such that

var(θ̃(X)) ≥ I(θ0)
−1,

where

I(θ) = E

(
∂LT (θ)

∂θ

)2

= E

(
− ∂2LT (θ)

∂θ2

)
.

is the Fisher information. Furthermore, under suitable regularity conditions, the MLE will

asymptotically attain this bound. It is reasonable to ask, how one can interprete this bound.

(i) Situation 1. I(θ0) = E

(
− ∂2LT (θ)

∂θ2 ⌋θ0
)

is large (hence variance of the mle will be small)

then it means that the gradient of ∂LT (θ)
∂θ is steep. Hence even for small deviations from

θ0,
∂LT (θ)
∂θ is likely to be far from zero. This means the mle θ̂T is likely to be in a close

neighbourhood of θ0.

(ii) Situation 2. I(θ0) = E

(
− ∂2LT (θ)

∂θ2 ⌋θ0
)

is small (hence variance of the mle will large).

In this case the gradient of the likelihood ∂LT (θ)
∂θ is flatter and hence ∂LT (θ)

∂θ ≈ 0 for a

large neighbourhood about the true parameter θ. Therefore the mle θ̂T can lie in a large

neighbourhood of θ0.

This is one explanation as to why I(θ) is called the Fisher information. It contains informa-

tion on how close close any estimator of θ can be.

Look at the censoring example, Example 4.20, page 112, Davison (2002).
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Chapter 5

Confidence Intervals

5.1 Confidence Intervals and testing

We first summarise the results in the previous section (which will be useful in this section). For

convenience, we will assume that the likelihood is for iid random variables, whose density is

f(x; θ0) (though it is relatively simple to see how this can be generalised to general likelihoods -

of not necessarily iid rvs). Let us suppose that θ0 is the true parameter that we wish to estimate.

Based on Theorem 4.1.2 we have

√
T
(
θ̂T − θ0

) D→ N
(
0,

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}−1)

, (5.1)

1√
T

∂LT

∂θ
⌋θ=θ0

D→ N
(
0,

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2})

(5.2)

and

2
(
LT (θ̂T )− LT (θ0)

) D→ χ2
p, (5.3)

where p are the number of parameters in the vector θ. Using any of (5.1), (5.2) and (5.3) we

can construct 95% CI for θ0.

5.1.1 Constructing confidence intervals using the likelihood

See also Section 4.5, Davison (2002).

One the of main reasons that we show asymptotic normality of an estimator (it is usually

not possible to derive normality for finite samples) is to construct confidence intervals (CIs) and

to test.
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In the case that θ0 is a scaler (vector of dimension one), it is easy to use (5.1) to obtain

√
T

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}1/2(

θ̂T − θ0
) D→ N(0, 1). (5.4)

Based on the above the 95% CI for θ0 is

[
θ̂T − 1√

T
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2

zα/2, θ̂T +
1√
T
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2

zα/2

]
.

The above, of course, requires an estimate of the (standardised) Fisher information E

(
∂ log f(X;θ)

∂θ ⌋θ0
)2

=

E

(
− ∂2 log f(X;θ)

∂θ2 ⌋θ0
)

Usually, we evaluate the second derivative of 1
T logLT (θ) =

1
T LT (θ) and

replace θ with the estimator of θ, θ̂T .

Exercise: Use (5.2) to construct a CI for θ0 based on the score

The CI constructed above works well if θ is a scalar. But beyond dimension one, constructing

a CI based on (5.1) (and the p-dimensional normal) is extremely difficult. More precisely, if θ0

is a p-dimensional vector then the analogous version of (5.4) is

√
T

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}1/2(

θ̂T − θ0
) D→ N(0, Ip),

using this it is difficult to obtain the CI of θ0. One way to construct the CI is to ‘square’
(
θ̂T −θ0

)

and use

(
θ̂T − θ0

)′
TE

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}(

θ̂T − θ0
) D→ χ2

p. (5.5)

Based on above a 95% CI is

{
θ;
(
θ̂T − θ

)′
TE

(
∂ log f(X; θ)

∂θ
⌋θ0
)2(

θ̂T − θ
)
≤ χ2

p(0.95)

}
. (5.6)

Note that as in the scalar case, this leads to the interval with the smallest length. A disadvantage

of (5.6) is that we have to (a) estimate the information matrix and (b) try to find all θ such

the above holds. This can be quite unwielding. An alternative method, which is asymptotically

equivalent to the above but removes the need to estimate the information matrix and is to use

(5.3). By using (5.3), a 100(1− α)% CI for θ0 is

{
θ; 2
(
LT (θ̂T )− LT (θ)

)
≤ χ2

p(100(1− α))

}
. (5.7)

The above is not easy to calculate, but it is feasible.
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Example 5.1.1 In the case that θ0 is a scalar the 95% CI based on (5.7) is

{
θ;LT (θ) ≥ LT (θ̂T )−

1

2
χ2
p(0.95)

}
.

Both the 95% CIs in (5.6) and (5.7) will be very close for relatively large sample sizes.

However one advantage of using (5.7) instead of (5.6) is that it is easier to evaluate - no need to

obtain the second derivative of the likelihood etc.

Another feature which differentiates the CIs in (5.6) and (5.7) is that the CI based on (5.6)

is symmetric about θ̂T (recall that (X̄ − 1.96σ/
√
T , X̄ + 1.96σ/

√
T )) is symmetric about X̄,

whereas the symmetry condition may not hold for sample sizes when constructing a CI for θ0

using (5.7). This is a positive advantage of using (5.7) instead of (5.6). A disadvantage of using

(5.7) instead of (5.6) is that sometimes in the CI based on (5.7) may have more than one interval.

As you can see if the dimension of θ is large it is quite difficult to evaluate the CI (try it

for the simple case that the dimension is two!). Indeed for dimensions greater than three it is

extremely hard. However in most cases, we are only interested in constructing CIs for certain

parameters of interest, the other unknown parameters are simply nuisance parameters and CIs

for them are not of interest. For example, for the normal distribution we may only be interested

in CIs for the mean but not the variance.

It is clear that directly using the log-likelihood ratio to construct CIs (and also test) will

mean also constructing CIs for the nuisance parameters. Therefore below (in Section ??) we

construct a variant of the likelihood (called the Profile likelihood), which allows us to deal with

nuisance parameters in a more efficient way.

5.1.2 Testing using the likelihood

Let us suppose we wish to test the hypothesis H0 : θ = θ0 against the alternative HA : θ ̸= θ0.

We can use any of the results in (5.1), (5.2) and (5.3) to do the test - they will lead to slightly

different p-values, but ‘asympototically’ they are all equivalent, because they are all based

(essentially) on the same derivation.

We now list the three tests that one can use.

The Wald test

The Wald statistic is based on (5.1). We recall from (5.1) that if the null is true, then we have

√
T
(
θ̂T − θ0

) D→ N
(
0,

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}−1)

.
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Thus we can use as the test statistic

T1 =
√
T

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}1/2(

θ̂T − θ0
) D→ N (0, 1).

Let us now consider how the test statistics behaves under the alternative HA : θ = θ1. If the

null is not true, then we have that

(θ̂T − θ0) = (θ̂T − θ1) + (θ1 − θ0)

≈ I(θ1)
−1 1√

T

∑

t

∂ log f(Xt; θ1)

∂θ1
(θ1 − θ0)

Thus the distribution of the test statistic T1 becomes centered about
√
T

{
E

(
∂ log f(X;θ)

∂θ ⌋θ0
)2}1/2(

θ−

θ0
)
. Thus for a larger sample size the more likely we are to reject the null.

Remark 5.1.1 (Types of alternatives) In the case that the alternative is fixed, it is clear

that the power in the test goes to 100%. Therefore, often to see the effectiveness of the test, one

lets the alternative get closer to the the null as T → ∞. For example

• Suppose that θ1 = θ0 +
1
T , then the center of T1 is 1√

T

{
E

(
∂ log f(X;θ)

∂θ ⌋θ0
)2}1/2

→ 0. Thus

the alternative is too close to the null for us to discriminate between the the two.

• Suppose that θ1 = θ0 +
1√
T
, then the center of T1 is

{
E

(
∂ log f(X;θ)

∂θ ⌋θ0
)2}1/2

. Therefore,

the test does have power, but it’s not 100%.

In the case that the dimension of θ is greater than one, we use the test statistic T̃1 =
(
θ̂T − θ0

)√
TE

(
∂ log f(X;θ)

∂θ ⌋θ0
)2(

θ̂T − θ0
)
instead of T1. Noting that the distribution of T1 is a

chi-squared with p-degrees of freedom.

The Score test

The score test is based on the score. We recall from (??), that under the null the distribution

of the score is

1√
T

∂LT

∂θ
⌋θ=θ0

D→ N
(
0,

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2})

.

Thus we use as the test statistic

T2 =
1√
T

{
E

(
∂ log f(X; θ)

∂θ
⌋θ0
)2}−1/2∂LT

∂θ
⌋θ=θ0

D→ N (0, 1).

An advantage of this test is that the maximum likelihood estimator (under either the null or

alternative) does not have to be calculated.

Exercise: What does the test statistic look like under the alternative?
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The log-likelihood ratio test

Probably one of the most popular test os the log-likelihood ratio tests. This test is based on

(5.3), and the test statistic is

T3 = 2
(
LT (θ̂T )− LT (θ0)

) D→ χ2
p.

An advantage of this test statistic is that it is pivotal, in the sense that the Fisher information

etc. does not have to calculated, only the maximum likelihood estimator.

Exercise: What does the test statistic look like under the alternative?

5.1.3 Applications of the log-likeihood ratio to the multinomial distribution

Example 5.1.2 (The multinomial distribution) This is a generalisation of the binomial

distribution. In this case at any given trial there can arise m different events (in the Binomial

case m = 2). Let Zi denote the outcome of the ith trial and assume P (Zi = k) = πi (π1 + . . .+

πm = 1). Suppose there were n trial conducted and let Y1 denote the number of times event 1

arises, Y2 denote the number of times event 2 arises and so on. Then it is straightforward to

show that

P (Y1 = k1, . . . , Ym = km) =

(
n

k1, . . . , km

) m∏

i=1

πkii .

If we do not impose any constraints on the probabilities {πi}, given {Yi}mi=1 is straightforward

to derive the mle of {πi} (it is very intuitive too!).

Noting that πm = 1−
∑m−1

i=1 πi, the log-likelihood of the multinomial is proportional to

LT (π) =
m−1∑

i=1

yi log πi + ym log(1−
m−1∑

i=1

πi).

Differentiating the above with respect to πi and solving gives the mle estimator π̂i = Yi/n, which

is what we would have expected! We observe that though there are m probabilities to estimate

due to the constraint πm = 1 −
∑m−1

i=1 πi, we only have to estimate (m − 1) probabilities. We

mention, that the same estimators can also be obtained by using Lagrange multipliers, that

is maximising LT (π) subject to the parameter constraint that
∑p

j=1 πi = 1. To enforce this

constraint, we normally add an additional term to LT (π) and include the dummy variable λ.

That is we define the constrained likelihood

L̃T (π,λ) =
m∑

i=1

yi log πi + λ(
m∑

i=1

πi − 1).
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Now if we maximise L̃T (π,λ) with respect to {πi}mi=1 and λ we will obtain the estimators

π̂i = Yi/n (which is the same as the maximum of LT (π)).

To derive the limiting distribution we note that the second derivative is

−∂
2LT (π)

∂πiπj
=

⎧
⎨

⎩

yi
π2
i
+ ym

(1−
∑m−1

r=1 πr)2
i = j

ym
(1−

∑m−1
r=1 πr)2

i ̸= j

Hence taking expectations of the above the information matrix is the (k − 1)× (k − 1) matrix

I(π) = n

⎛

⎜⎜⎜⎜⎜⎝

1
π1

+ 1
πm

1
πm

. . . 1
πm

1
πm

1
π2

+ 1
πm

. . . 1
πm

...
...

...
...

1
πm−1

. . . 1
πm−1

+ 1
πm

⎞

⎟⎟⎟⎟⎟⎠
.

Provided no of πi is equal to either 0 or 1 (which would drop the dimension of m and make

I(π)) singular, then the asymptotic distribution of the mle the normal with variance I(π)−1.

Sometimes the probabilities {πi} will not be ‘free’ and will be determined by a parameter θ

(where θ is an r-dimensional vector where r < m), ie. πi = πi(θ), in this case the likelihood of

the multinomial is

LT (π) =
m−1∑

i=1

yi log πi + ym log(1−
m−1∑

i=1

πi(θ)).

By differentiating the above with respect to θ and solving will give the mle.

Pearson’s goodness of Fit test

We now derive Pearson’s goodness of Fit test using the log-likelihood ratio, though Pearson did

not use this method to derive his test.

Suppose the null is H0 : π1 = π̃1, . . . ,πm = π̃m (where {π̃i} are some pre-set probabilities)

and HA : the probabilities are not the given probabilities. Hence we are testing restricted model

(where we do not have to estimate anything) against the full model where we estimate the

probabilities using πi = Yi/n.

The log-likelihood ratio in this case is

W = 2
{
argmax

π
LT (π)− LT (π̃)

}
.

Under the null we know that W = 2
{
argmaxπ LT (π) − LT (π̃)

} P→ χ2
m−1 (because we have to

estimate (m− 1) parameters). We now derive an expression for W and show that the Pearson-
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statistic is an approximation of this.

1

2
W =

m−1∑

i=1

Yi log
(Yi
n

)
+ Ym log

Ym
n

−
m−1∑

i=1

Yi log π̃i − Ym log π̃m

=
m∑

i=1

Yi log
( Yi
nπ̃i

)
.

Recall that Yi is often called the observed Yi = Oi and nπ̃i the expected under the null Ei = nπ̃i.

Then W = 2
∑m

i=1Oi log
(
Oi
Ei

) P→ χ2
m−1. By using that for a close to x and making a Taylor

expansion of x log(xa−1) about x = a we have x log(xa−1) ≈ a log(aa−1)+(x−a)+ 1
2(x−a)2/a.

We let O = x and E = a, then assuming the null is true and Ei ≈ Oi we have

W = 2
m∑

i=1

Yi log
( Yi
nπ̃i

)
≈ 2

m∑

i=1

(
(Oi − Ei) +

1

2

(Oi − Ei)2

Ei

)
.

Now we note that
∑m

i=1Ei =
∑m

i=1Oi = n hence the above reduces to

W ≈ (Oi − Ei)2

Ei

) D→ χ2
m−1.

We recall that the above is the Pearson test statistic. Hence this is one methods for deriving

the Pearson chi-squared test for goodness of fit.

By using a similar argument, we can also obtain the test statistic of the chi-squared test for

independent (and an explanation for the rather strange number of degrees of freedom!).
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Chapter 6

The Profile Likelihood

6.1 The Profile Likelihood

See also Section 4.5.2, Davison (2002).

6.1.1 The method of profiling

Let us suppose that the unknown parameters θ can be partitioned as θ′ = (ψ′,λ′), where ψ

are the p-dimensional parameters of interest (eg. mean) and λ are the q-dimensional nuisance

parameters (eg. variance). We will need to estimate both ψ and λ, but our interest is in testing

only the parameter ψ (without any information on λ) and construction confidence intervals for

ψ (without constructing unnecessary confidence intervals for λ - confidence intervals for a large

number of parameters are wider than those for a few parameters). To achieve this one often uses

the profile likelihood. To motivate the profile likelihood, we first describe a method to estimate

the parameters (ψ,ψ) in two stages and consider some examples.

Let us suppse that {Xt} are iid random variables, with density f(x;ψ,λ) where our objective

is to estimate ψ and λ. In this case the log-likelihood is

LT (ψ,λ) =
T∑

t=1

log f(Xt;ψ,λ).

To estimate ψ and λ one can use (λ̂T , ψ̂T ) = argmaxλ,ψ LT (ψ,λ). However, this can quite

difficult, and lead to expression which are hard to maximise. Instead let us consider a different

method, which may, sometimes, be easier to evaluate. Suppose, for now, ψ is known, then we

rewrite the likelihood as LT (ψ,λ) = Lψ(λ) (to show that ψ is fixed but λ varies). To estimate

λ we maximise Lψ(λ) with respect to λ, ie.

λ̂ψ = argmax
λ

Lψ(λ).
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In reality ψ this unknown, hence for each ψ we can evaluate λ̂ψ. Note that for each ψ, we have

a new curve Lψ(λ) over λ. Now to estimate ψ, we evaluate the maximum Lψ(λ), over λ, and
choose the ψ, which is the maximum over all these curves. In other words, we evaluate

ψ̂T = argmax
ψ

Lψ(λ̂ψ) = argmax
ψ

LT (ψ, λ̂ψ).

A bit of logical deduction shows that ψ̂T and λψ̂T
are the maximum likelihood estimators

(λ̂T , ψ̂T ) = argmaxψ,λ LT (ψ,λ).

We note that we have profiled out nuisance parameter λ, and the likelihood Lψ(λ̂ψ) =

LT (ψ, λ̂ψ) is completely in terms of the parameter of interest ψ.

The advantage of this best illustrated through some examples.

Example 6.1.1 Let us suppose that {Xt} are iid random variables from a Weibull distribution

with density f(x;α, θ) = αyα−1

θα exp(−(y/θ)α). We know from Example 4.1.2, that if α, were

known an explicit expression for the MLE can be derived, it is

θ̂α = argmax
θ

Lα(θ)

= argmax
θ

T∑

t=1

(
logα+ (α− 1) log Yt − α log θ −

(Yt
θ

)α
)

= argmax
θ

T∑

t=1

(
− α log θ −

(Yt
θ

)α
)

= (
1

T

T∑

t=1

Y α
t )1/α,

where Lα(X; θ) =
∑T

t=1

(
logα + (α − 1) log Yt − α log θ −

(
Yt
θ

)α
)
. Thus for a given α, the

maximum likelihood estimator of θ can be derived. The maximum likelihood estimator of α is

α̂T = argmax
α

T∑

t=1

(
logα+ (α− 1) log Yt − α log(

1

T

T∑

t=1

Y α
t )1/α −

( Yt

( 1
T

∑T
t=1 Y

α
t )1/α

)α
)
.

Therefore, the maximum likelihood estimator of θ is ( 1
T

∑T
t=1 Y

α̂T
t )1/α̂T . We observe that eval-

uating α̂T can be tricky but no worse than maximising the likelihood LT (α, θ) over α and θ.

As we mentioned above, we often do not have any interest in the nuisance parameters λ and

are only interesting in testing and constructing CIs for α. In this case, we are interested in the

limiting distribution of the MLE α̂T . This can easily be derived by observing that

√
T

(
ψ̂T − ψ

λ̂T − λ

)
D→ N

(
0,

(
Iψψ Iψλ

Iλψ Iλλ

)−1)
.
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where
(

Iψψ Iψλ

Iλψ Iλλ

)

=

(
E
(
− ∂2 log f(Xt;ψ,λ)

∂ψ2

)
E
(
− ∂2 log f(Xt;ψ,λ)

∂ψ∂λ

)

E
(
− ∂2 log f(Xt;ψ,λ)

∂ψ∂λ

)′
E
(
− ∂2 log f(Xt;ψ,λ)

∂ψ2

)

)

. (6.1)

To derive an exact expression for the limiting variance of
√
T (ψ̂T −ψ), we note that the inverse

of a block matrix is
(

A B

C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1CB(A−BD−1C)−1 (D − CA−1B)−1

)

.

Thus the above implies that

√
T (ψ̂T − ψ)

D→ N (0, (Iψ,ψ − Iψ,λI
−1
λλ Iλ,ψ)

−1).

Thus if ψ is a scalar we can easily use the above to construct confidence intervals for ψ.

Exercise: How to estimate Iψ,ψ − Iψ,λI
−1
λλ Iλ,ψ?

6.1.2 The score and the log-likelihood ratio for the profile likelihood

To ease notation, let us suppose that ψ0 and λ0 are the true parameters in the distribution.

The above gives us the limiting distribution of (ψ̂T − ψ0), this allows us to test ψ, however

the test ignores any dependency that may exist with the nusiance estimator parameter λ̂T . An

alternative test, which circumvents this issue is to do a log-likelihood ratio test of the type

2

{
max
ψ,λ

LT (ψ,λ)−max
λ

LT (ψ0,λ)

}
. (6.2)

However, to derive the limiting distribution in this case for this statistic is a little more com-

plicated than the log-likelihood ratio test that does not involve nusiance parameters. This is

because a direct Taylor expansion does not work. However we observe that

2

{
max
ψ,λ

LT (ψ,λ)−max
λ

LT (ψ0,λ)

}
= 2

{
max
ψ,λ

LT (ψ,λ)− LT (ψ0,λ0)

}
− 2

{
max
λ

LT (ψ0,λ)−max
λ

LT (ψ0,λ0)

}
,

now we will show below that by using a few Taylor expansions we can derive the limiting

distribution of (6.2).

In the theorem below we will derive the distribution of the score and the nested- loglikelihood.

Please note you do not have to learn this proof.

Theorem 6.1.1 Suppose Assumption 4.1.1 holds. Suppose that (ψ0,λ0) are the true parame-

ters. Then we have

∂LT (ψ,λ)

∂ψ
⌋λ̂ψ0 ,ψ0

≈ ∂LT (ψ,λ)

∂ψ
⌋λ0,ψ0 − Iψ0λ0I

−1
λ0λ0

∂LT (ψ0,λ)

∂λ
⌋ψ0,λ0 (6.3)
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1√
T

∂LT (ψ,λ)

∂ψ
⌋λ̂ψ0 ,ψ0

D→ N (0, (Iψ0ψ0 − Iψ0λ0I
−1
λ0λ0

Iλ,ψ)) (6.4)

and

2

{
LT (ψ̂T , λ̂T )− LT (ψ0, λ̂ψ0)

}
D→ χ2

p (6.5)

where I is defined as in (6.1).

PROOF. We first prove (6.3) which is the basis of the proofs of (6.4) and (6.5) - in the remark

below we try to interprete (6.3). To avoid, notationaly difficulties by considering the elements

of the vector ∂LT (ψ,λ)
∂ψ ⌋λ̂ψ0 ,ψ0

and ∂LT (ψ,λ)
∂λ ⌋λ=λ0,ψ0 (as discussed in Section 4.1.3) we will suppose

that these are univariate random variables.

Our objective is to find an expression for ∂LT (ψ,λ)
∂ψ ⌋λ̂ψ0 ,ψ0

in terms of ∂LT (ψ,λ)
∂λ ⌋λ=λ0,ψ0 and

∂LT (ψ,λ)
∂ψ ⌋λ=λ0,ψ0 which will allow us to obtain its variance and asymptotic distribution easily.

Now making a Taylor expansion of ∂LT (ψ,λ)
∂ψ ⌋λ̂ψ0 ,ψ0

about ∂LT (ψ,λ)
∂ψ ⌋λ0,ψ0 gives

∂LT (ψ,λ)

∂ψ
⌋λ̂ψ0 ,ψ0

≈ ∂LT (ψ,λ)

∂ψ
⌋λ0,ψ0 +

∂2LT (ψ,λ)

∂λ∂ψ
⌋λ0,ψ0(λ̂ψ0 − λ0).

Notice that we have used ≈ instead of = because we replace the second derivative with its true

parameters. Now if the sample size is large enough then we can say that ∂2LT (ψ,λ)
∂λ∂ψ ⌋λ0,ψ0 ≈

E
(∂2LT (ψ,λ)

∂λ∂ψ ⌋λ0,ψ0

)
. To see why this is true consider the case that of iid random variables then

1

T

∂2LT (ψ,λ)

∂λ∂ψ
⌋λ0,ψ0 =

1

T

T∑

t=1

∂2 log f(Xt;ψ,λ)

∂λ∂ψ
⌋λ0,ψ0

≈ E

(
∂2 log f(Xt;ψ,λ)

∂λ∂ψ
⌋λ0,ψ0

)
.

Therefore we have that

∂LT (ψ0,λ)

∂ψ
⌋λ̂ψ0 ≈ ∂LT (ψ,λ)

∂ψ
⌋λ0,ψ0 + T · Iλψ(λ̂ψ0 − λ0) (6.6)

Hence we have the first part of the decomposition of ∂LT (ψ0,λ)
∂ψ ⌋λ̂ψ0 into the distribution which

is known, now we need find a decomposition of (λ̂ψ0 − λ0) into known distributions. We first

recall that since LT (ψ0, λ̂ψ0) = argmaxλ LT (ψ0,λ) then

∂LT (ψ0,λ)

∂λ
⌋λ̂ψ0 = 0

(as long as the parameter space is large enough and the maximum is not on the boundary).

Therefore making a Taylor expansion of ∂LT (ψ0,λ)
∂λ ⌋λ̂ψ0 about ∂LT (ψ0,λ)

∂λ ⌋λ0,ψ=ψ0 gives

∂LT (ψ0,λ)

∂λ
⌋λ̂ψ0 ≈ ∂LT (ψ0,λ)

∂λ
⌋λ0,ψ0 +

∂2LT (ψ0,λ)

∂λ2
⌋λ0,ψ0(λ̂ψ0 − λ0).
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Again using the same trick as in (6.6) we have

∂LT (ψ0,λ)

∂λ
⌋λ̂ψ0 ≈ ∂LT (ψ0,λ)

∂λ
⌋λ0,ψ0 + T · Iλλ(λ̂ψ0 − λ0) = 0.

Therefore

(λ̂ψ0 − λ0) = −
I−1
λλ

T

∂LT (ψ0,λ)

∂λ
⌋λ0,ψ0 . (6.7)

Therefore substituting (6.6) into (6.7) gives

∂LT (ψ0,λ)

∂ψ
⌋λ̂ψ0 ≈ ∂LT (ψ,λ)

∂ψ
⌋λ0,ψ0 − IψλI

−1
λλ

∂LT (ψ0,λ)

∂λ
⌋ψ0,λ0

and (6.3).

To prove (6.4) (ie. obtain the asympototic distribution and limiting variance of ∂LT (ψ0,λ)
∂ψ ⌋λ̂ψ0 ),

we recall that the regular score function satisfies

1√
T

∂LT (ψ,λ)

∂ψ
⌋λ0,ψ0 =

1√
T

(
∂LT (ψ,λ)

∂ψ ⌋λ0,ψ0

∂LT (ψ0,λ)
∂λ ⌋ψ0,λ0

)
D→ N (0, I(θ0)).

Now by substituting the above into (6.4) we immediately obtain (6.4).

Finally to prove (6.5) we the following decomposition, Taylor expansions and the trick in

(6.6) to obtain

2

{
LT (ψ̂T , λ̂T )− LT (ψ0, λ̂ψ0)

}
= 2

{
LT (ψ̂T , λ̂T )− LT (ψ0,λ0)

}
− 2

{
LT (ψ0, λ̂ψ0)− LT (ψ0,λ0)

}

≈ (θ̂T − θ0)
′I(θ)(θ̂T − θ0)− (λ̂ψ0 − λ0)

′Iλλ(λ̂ψ0 − λ0), (6.8)

where θ̂′T = (ψ̂, λ̂) (the mle). Now we want to rewrite (λ̂ψ0 −λ0)′ in terms of (θ̂T − θ0). We start

by recalling that from (6.6) we have

(λ̂ψ0 − λ0) = −
I−1
λλ

T

∂LT (ψ0,λ)

∂λ
⌋λ0,ψ0 .

Now we will rewrite ∂LT (ψ0,λ)
∂λ ⌋λ0,ψ0 in terms of (θ̂T − θ0) by using

∂LT (θ)

∂θ
⌋θ̂T ≈ ∂LT (θ)

∂θ
⌋θ0 + T · I(θ)(θ̂T − θ0)

⇒ ∂LT (θ)

∂θ
⌋θ0 ≈ −I(θ)(θ̂T − θ0).

Therefore concentrating on the subvector ∂LT (θ)
∂λ ⌋ψ0,λ0 we see that

∂LT (θ)

∂λ
⌋ψ0,λ0 ≈ Iλψ(ψ̂ − ψ0) + Iλλ(λ̂− λ0). (6.9)
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Substituting (6.9) into (6.7) gives

(λ̂ψ0 − λ0) ≈ −I−1
λλ Iλψ(ψ̂ − ψ0) + (λ̂− λ0).

Finally substituting the above into (6.8) and making lots of cancellations we have

2

{
LT (ψ̂T , λ̂T )− LT (ψ0, λ̂ψ0)

}
≈ T (ψ̂ − ψ0)

′(Iψψ − IψλI
−1
λ,λIλ,ψ)(ψ̂ − ψ0).

Finally, since
√
T (θ̂T − θ0)

D→ N (0, I(θ)−1),

by using inversion formulas for block matrices we have that
√
T (ψ̂ − ψ0)

D→ N (0, (Iψψ −
IψλI

−1
λ,λIλ,ψ)

−1), which gives the desired result. !

Remark 6.1.1 (i) We first make the rather interesting observation. The limiting variance

of ∂LT (ψ,λ)
∂ψ ⌋ψ0,λ0 is Iψψ, whereas the the limiting variance of ∂LT (ψ,λ)

∂ψ ⌋λ̂ψ0 ,ψ0
is (Iψψ −

IψλI
−1
λ,λIλ,ψ) and the limiting variance of

√
T (ψ̂ − ψ0) is (Iψψ − IψλI

−1
λ,λIλ,ψ)

−1.

(ii) Look again at the expression

∂LT (ψ,λ)

∂ψ
⌋λ̂ψ0 ,ψ0

≈ ∂LT (ψ,λ)

∂ψ
⌋λ0,ψ0 − IψλI

−1
λλ

∂LT (ψ0,λ)

∂λ
⌋λ0,ψ0 (6.10)

It is useful to understand where it came from. Consider the problem of linear regression.

Suppose X and Y are random variables and we want to construct the best linear predictor

of Y given X. We know that the best linear predictor is Ŷ (X) = E(XY )/E(Y 2)X and the

residual and mean squared error is

Y − Ŷ (X) = Y − E(XY )

E(Y 2)
X and E

(
Y − E(XY )

E(Y 2)
X

)2

= E(Y 2)− E(XY )E(Y 2)−1
E(XY ).

Compare this expression with (6.10). We see that in some sense ∂LT (ψ,λ)
∂ψ ⌋λ̂ψ0 ,ψ0

can be

treated as the residual (error) of the projection of ∂LT (ψ,λ)
∂ψ ⌋λ0,ψ0 onto ∂LT (ψ0,λ)

∂λ ⌋lambda0,ψ0.

This is quite surprising!

We now aim to use the above result. It is immediately clear that (6.5) can be used for both

constructing likelihoods and testing. For example, to construct a 95% CI for ψ we can use the

mle θ̂T = (ψ̂T , λ̂T ) and the profile likelihood and use the 95% CI
{
ψ; 2

{
LT (ψ̂T , λ̂T )− LT (ψ, λ̂ψ)

}
≤ χ2

p(0.95)

}
.

As you can see by profiling out the parameter λ, we have avoided the need to also construct a

CI for λ too. This has many advantages, from a practical perspective it reduced the dimension

of the parameters.
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The log-likelihood ratio test in the presence of nuisance parameters

An application of Theorem 6.1.1 is for nested hypothesis testing, as stated at the beginning of

this section. (6.5) can be used to test H0 : ψ = ψ0 against HA : ψ ̸= ψ0 since

2

{
max
ψ,λ

LT (ψ,λ)−max
λ

LT (ψ0,λ)

}
D→ χ2

p.

Example 6.1.2 (χ2-test for independence) Now it is worth noting that using the Profile

likelihood one can derive the chi-squared test for independence (in much the same way that the

Pearson goodness of fit test was derived using the log-likelihood ratio test).

Do this as an exercise (see Davison, Example 4.37, page 135).

The score test in the presence of nuisance parameters

We recall that we used Theorem 6.1.1 to obtain the distribution of 2
{
maxψ,λ LT (ψ,λ)−maxλ LT (ψ0,λ)

}

under the null, we now motivate an alternative test to test the same hypothesis (which uses the

same Theorem). We recall that under the null H0 : ψ = ψ0 the derivative ∂LT (ψ,λ)
∂λ ⌋λ̂ψ0 ,ψ0

= 0,

but the same is not true of ∂LT (ψ,λ)
∂ψ ⌋λ̂ψ0 ,ψ0

. However, if the null is true we would expect if λ̂ψ0

to be close to the true λ0 and for ∂LT (ψ,λ)
∂ψ ⌋λ̂ψ0 ,ψ0

to be close to zero. Indeed this is what we

showed in (6.4), where we showed that under the null

∂ 1√
T
LT (ψ,λ)

∂ψ
⌋λ̂ψ0

D→ N (0, Iψψ − IψλI
−1
λ,λIλ,ψ), (6.11)

where λψ0 = argmaxλ LT (ψ0,λ).

Therefore (6.11) suggests an alternative test for H0 : ψ = ψ0 against HA : ψ ̸= ψ0. We can

use 1√
T

∂LT (ψ,λ)
∂ψ ⌋λ̂ψ0 as the test statistic. This is called the score or LM test.

The log-likelihood ratio test and the score test are asymptotically equivalent. There are

advantages and disadvantages of both.

(i) An advantage of the log-likelihood ratio test is that we do not need to calculate the

information matrix.

(ii) An advantage of the score test is that we do not have to evaluate the the maximum

likelihood estimates under the alternative model.

6.1.3 Examples

Example: An application of profiling to frequency estimation

Question
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Suppose that the observations {Xt; t = 1, . . . , T} satisfy the following nonlinear regression

model

Xt = A cos(ωt) +B sin(ωt) + εt

where {εt} are iid standard normal random variables and 0 < ω < π. The parameters

A,B, and ω are real and unknown.

Some useful identities are given at the end of the question.

(i) Ignoring constants, obtain the log-likelihood of {Xt}. Denote this likelihood as

LT (A,B,ω).

(ii) Let

ST (A,B,ω) =

( T∑

t=1

X2
t − 2

T∑

t=1

Xt
(
A cos(ωt) +B sin(ωt)

)
+

1

2
T (A2 +B2)

)
.

Show that

2LT (A,B,ω) + ST (A,B,ω) =
(A2 −B2)

2

T∑

t=1

cos(2ω) +AB
T∑

t=1

sin(2ω).

Thus show that |LT (A,B,ω)+ 1
2ST (A,B,ω)| = O(1) (ie. the difference does not grow

with T ).

Since LT (A,B,ω) and −1
2ST (A,B,ω) are asymptotically equivalent, for the rest of

this question, use −1
2 ST (A,B,ω) instead of the likelihood LT (A,B,ω).

(iii) Obtain the profile likelihood of ω.

(hint: Profile out the parametersA andB, to show that ω̂T = argmaxω |
∑T

t=1Xt exp(itω)|2).

Suggest, a graphical method for evaluating ω̂T ?

(iv) By using the identity

T∑

t=1

exp(iΩt) =

⎧
⎨

⎩

exp( 12 i(T+1)Ω) sin( 12TΩ)

sin( 12Ω)
0 < Ω < 2π

T Ω = 0 or 2π.
(6.12)

show that for 0 < Ω < 2π we have

T∑

t=1

t cos(Ωt) = O(T )
T∑

t=1

t sin(Ωt) = O(T )

T∑

t=1

t2 cos(Ωt) = O(T 2)
T∑

t=1

t2 sin(Ωt) = O(T 2).
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(v) By using the results in part (iv) show that the Fisher Information of LT (A,B,ω)

(denoted as I(A,B,ω)) is asymptotically equivalent to

2I(A,B,ω) = E
(∂2ST

∂ω2

)
=

⎛

⎜⎜⎝

T
2 0 T 2

2 B +O(T )

0 T
2 −T 2

2 A+O(T )
T 2

2 B +O(T ) −T 2

2 A+O(T ) T 3

3 (A2 +B2) +O(T 2)

⎞

⎟⎟⎠ .

(vi) Derive the asymptotic variance of maximum likelihood estimator, ω̂T , derived in part

(iv).

Comment on the rate of convergence of ω̂T .

Useful information: In this question the following quantities may be useful:

T∑

t=1

exp(iΩt) =

⎧
⎨

⎩

exp( 12 i(T+1)Ω) sin( 12TΩ)

sin( 12Ω)
0 < Ω < 2π

T Ω = 0 or 2π.
(6.13)

the trignometric identities: sin(2Ω) = 2 sinΩ cosΩ, cos(2Ω) = 2 cos2(Ω)− 1 = 1− 2 sin2Ω,

exp(iΩ) = cos(Ω) + i sin(Ω) and

T∑

t=1

t =
T (T + 1)

2

T∑

t=1

t2 =
T (T + 1)(2T + 1)

6
.

Solution

(i) Since {εt} are standard normal iid random variables the likelihood is

LT (A,B,ω) = −1

2

T∑

t=1

(Xt −A cos(ωt)−B sin(ωt))2.
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(ii) It is straightforward to show that

−2LT (A,B,ω)

=
T∑

t=1

X2
t − 2

T∑

t=1

Xt
(
A cos(ωt) +B sin(ωt)

)

+A2
T∑

t=1

cos2(ωt) +B2
T∑

t=1

sin2(ωt) + 2AB
T∑

t=1

sin(ωt) cos(ωt)

=
T∑

t=1

X2
t − 2

T∑

t=1

Xt
(
A cos(ωt) +B sin(ωt)

)
+

A2

2

T∑

t=1

(1 + cos(2ω)) +
B2

2

T∑

t=1

(1− cos(2ω)) +AB
T∑

t=1

sin(2ω)

=
T∑

t=1

X2
t − 2

T∑

t=1

Xt
(
A cos(ωt) +B sin(ωt)

)
+

T

2
(A2 +B2) +

(A2 −B2)

2

T∑

t=1

cos(2ω) +AB
T∑

t=1

sin(2ω)

= ST (A,B,ω) +
(A2 −B2)

2

T∑

t=1

cos(2ω) +AB
T∑

t=1

sin(2ω)

Now by using (6.13) we have

−2LT (A,B,ω) = ST (A,B,ω) +O(1),

as required.

(iii) To obtain the profile likelihood, let us suppose that ω is known, Then the mle of A and B

(using −1
2 ST ) is

ÂT (ω) =
2

T

T∑

t=1

Xt cos(ωt) B̂T (ω) =
2

T

T∑

t=1

Xt sin(ωt).

Thus the profile likelihood (using the approximation ST ) is

−1

2
Sp(ω) =

−1

2

( T∑

t=1

X2
t − 2

T∑

t=1

Xt
(
ÂT (ω) cos(ωt) + B̂(ω) sin(ωt)

)
+

T

2
(ÂT (ω)

2 + B̂(ω)2)

)

=
−1

2

( T∑

t=1

X2
t − T

2

[
ÂT (ω)

2 + B̂T (ω)
2

])
.
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Thus the ω which maximises −1
2Sp(ω) is the parameter that maximises ÂT (ω)2+ B̂T (ω)2.

Since ÂT (ω)2 + B̂T (ω)2 =
1
2T |
∑T

t=1Xt exp(itω)|, we have

ω̂T = argmax
ω

(−1/2)Sp(ω) = argmax
ω

(
ÂT (ω)

2 + B̂T (ω)
2
)

= argmax
ω

∣∣
T∑

t=1

Xt exp(itω)
∣∣2,

as required.

(iv) Differentiating both sides of (6.12) with respect to Ω and considering the real and imaginary

terms gives
∑T

t=1 t cos(Ωt) = O(T )
∑T

t=1 t sin(Ωt) = O(T ). Differentiating both sides of

(6.12) twice wrt to Ω gives the second term.

(v) Differentiating ST (A,B,ω) =
(∑T

t=1X
2
t −2

∑T
t=1Xt

(
A cos(ωt)+B sin(ωt)

)
+ 1

2T (A
2+B2)

)

twice wrt to A,B and ω gives

∂ST

∂A
= −2

T∑

t=1

Xt cos(ωt) +AT

∂ST

∂B
= −2

T∑

t=1

Xt sin(ωt) +BT

∂ST

∂ω
= 2

T∑

t=1

AXtt sin(ωt)− 2
T∑

t=1

BXtt cos(ωt).

and ∂2ST
∂A2 = T , ∂

2ST
∂B2 = T , ∂2ST

∂A∂B = 0,

∂2ST

∂ω∂A
= 2

T∑

t=1

Xtt sin(ωt)

∂2ST

∂ω∂B
= −2

T∑

t=1

Xtt cos(ωt)

∂2ST

∂ω2
= 2

T∑

t=1

t2Xt
(
A cos(ωt) +B sin(ωt)

)
.

Now taking expectations of the above and using (v) we have

E(
∂2ST

∂ω∂A
) = 2

T∑

t=1

t sin(ωt)
(
A cos(ωt) +B sin(ωt)

)

= 2B
T∑

t=1

t sin2(ωt) + 2
T∑

t=1

At sin(ωt) cos(ωt)

= B
T∑

t=1

t(1− cos(2ωt)) +A
T∑

t=1

t sin(2ωt) =
T (T + 1)

2
B +O(T ) = B

T 2

2
+O(T ).
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Using a similar argument we can show that E( ∂
2ST

∂ω∂B ) = −AT 2

2 +O(T ) and

E(
∂2ST

∂ω2
) = 2

T∑

t=1

t2
(
A cos(ωt) +B sin(ωt)

)2

= (A2 +B2)
T (T + 1)(2T + 1)

6
+O(T 2) = (A2 +B2)T 3/3 +O(T 2).

Since E(−∇2LT ) ≈ 1
2E(∇2ST ), this gives the required result.

(vi) Noting that the asymptotic variance for the profile likelihood estimator ω̂T

(
Iω,ω − Iω,(AB)I

−1
A,BI(BA),ω

)−1

,

by subsituting (vi) into the above we have

2

(
A2 +B2

6
T 3 +O(T 2)

)−1

≈ 12

(A2 +B2)T 3

Thus we observe that the asymptotic variance of ω̂T is O(T−3).

Typically estimators have a variance of order O(T−1), so we see that the estimator ω̂T

variance which converges to zero, much faster. Thus the estimator is extremely good

compared with the majority of parameter estimators.

Example: An application of profiling in survival analysis

Question (This question also uses some methods from Survival Analysis which is covered later

in this course - see Sections 13.1 and 19.1).

Let Ti denote the survival time of an electrical component. It is known that the regressors

xi influence the survival time Ti. To model the influence the regressors have on the survival

time the Cox-proportional hazard model is used with the exponential distribution as the

baseline distribution and ψ(xi;β) = exp(βxi) as the link function. More precisely the

survival function of Ti is

Fi(t) = F0(t)
ψ(xi;β),

where F0(t) = exp(−t/θ). Not all the survival times of the electrical components are

observed, and there can arise censoring. Hence we observe Yi = min(Ti, ci), where ci is the

censoring time and δi, where δi is the indicator variable, where δi = 0 denotes censoring

of the ith component and δi = 1 denotes that it is not censored. The parameters β and θ

are unknown.
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(i) Derive the log-likelihood of {(Yi, δi)}.

(ii) Compute the profile likelihood of the regression parameters β, profiling out the base-

line parameter θ.

Solution

(i) The survivial function and the density are

fi(t) = ψ(xi;β)
{
F0(t)

}[ψ(xi;β)−1]
f0(t) and Fi(t) = F0(t)

ψ(xi;β).

Hence for this example we have

log fi(t) = logψ(xi;β)−
[
ψ(xi;β)− 1

] t
θ
− log θ − t

θ

logFi(t) = −ψ(xi;β)
t

θ
.

Therefore, the likelihood is

Ln(β, θ) =
n∑

i=1

δi
{
logψ(xi;β) + log f0(Ti) + (ψ(xi;β)− 1) logF0(t)

}
+

n∑

i=1

(1− δi)
{
ψ(xi;β) logF0(t)

}

=
n∑

i=1

δi
{
logψ(xi;β)− log θ

}
−

n∑

i=1

ψ(xi;β)
Ti

θ

(ii) Keeping β fixed and differentiating the above with respect to θ and equating to zero gives

∂Ln

∂θ
=

n∑

i=1

δi
{
− 1

θ

}
+
∑

i=1

ψ(xi;β)
Ti

θ2

and

θ̂(β) =

∑n
i=1 ψ(xi;β)Ti∑n

i=1 δi
.

Hence the profile likelihood is

ℓP (β) =
n∑

i=1

δi
{
logψ(xi;β)− log θ̂(β)

}
−

n∑

i=1

ψ(xi;β)
Ti

θ̂(β)
.

Hence to obtain an estimator of β we maximise the above with respect to β.
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An application of profiling in semi-parametric regression

We now consider how the profile ‘likelihood’ (we use inverted commas here because we do not use

the likelihood, but least squares instead) can be used in semi-parametric regression. Recently

this type of method has been used widely in various semi-parametric models. This section needs

a little knowledge of nonparametric regression, which is considered later in this course. Suppose

we observe (Yt, Ut, Xt) where

Yt = βXt + φ(Ut) + εt,

(Yt, Xt, Ut) are iid random variables and φ is an unknown function. To estimate β, we first

profile out φ(·), which we estimate as if β were known. In other other words, we suppose that β

is known and let Yt(β) = Yt−βXt. We then estimate φ(·) using the classic local least estimator,

in other words the φ(·) which minimises the criterion

φ̂β(u) = argmin
a

∑

t

Wb(u− Ut)(Yt(β)− a)2 =

∑
tWb(u− Ut)Yt(β)∑

tWb(u− Ut)

=

∑
tWb(u− Ut)Yt∑
tWb(u− Ut)

− β

∑
tWb(u− Ut)Xt∑
tWb(u− Ut)

:= Gb(u)− βHb(u), (6.14)

where

Gb(u) =

∑
tWb(u− Ut)Yt∑
tWb(u− Ut)

and Hb(u) =

∑
tWb(u− Ut)Xt∑
tWb(u− Ut)

.

Thus, given β the estimator of φ and the residuals εt are φ̂β(u) = Gb(u) − βHb(u) and Yt −
βXt − φ̂β(Ut). Given the estimated residuals Yt − βXt − φ̂β(Ut) we can now use least squares to

estimate coefficient β, where

LT (β) =
∑

t

(
Yt − βXt − φ̂β(Ut)

)2

=
∑

t

(
Yt − βXt −Gb(Ut) + βHb(Ut)

)2

=
∑

t

(
Yt −Gb(Ut)− β[Xt −Hb(Ut)]

)2
.

Therefore, the least squares estimator of β is

β̂b,T =

∑
t[Yt −Gb(Ut)][Xt −Hb(Ut)]∑

t[Xt −Hb(Ut)]2
.

Using βb,T we can then estimate (6.15). We observe how we have the used the principle of

profiling to estimate the unknown parameters. There is a large literature on this, including
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Wahba, Speckman, Carroll, Fan etc. In particular it has been shown that under some conditions

on b (as T → ∞), the estimator β̂b,T has the usual
√
T rate of convergence.

It should be mentioned that using random regressors Ut are not necessary. It could be that

Ut =
t
T (on a grid). In this case

φ̂β(u) = argmin
a

∑

t

Wb(u− t

T
)(Yt(β)− a)2 =

∑
tWb(u− t

T )Yt(β)∑
tWb(u− t

T )

=
∑

t

Wb(u− t

T
)Yt − β

∑

t

Wb(u− Ut)Xt

:= Gb(u)− βHb(u), (6.15)

where

Gb(u) =
∑

t

Wb(u− t

T
)Yt and Hb(u) =

∑

t

Wb(u− t

T
)Xt.

Using the above estimator of φ(·) we continue as before.
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