1 Mixture of continuous and discrete

$X \sim \operatorname{Beta}(a, b)$ for parameters $a, b>0$ is the pdf is given by

$$
f(x)=\frac{x^{a-1}(1-x)^{b-1}}{\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x}, 0<x<1
$$

The normalizing constant $\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x$ is also denoted by $\operatorname{Beta}(a, b)$.
X is a continuous random variable having probability density function $f ; N$ is a discrete random variable. Then

$$
f(X=x \mid N=n)=\frac{P(X=x, N=n)}{P(N=n)}=f_{X}(x) \frac{P(N=n \mid X=x)}{P(N=n)}
$$

1. Consider $n+m$ trials having a common probability of success. Suppose, however, that this success probability is not fixed in advance but is chosen from a uniform $(0,1)$ population. What is the conditional distribution of the success probability given that the $n+m$ trials result in n successes? Let X denote the trial success probability, which is $U(0,1)$. N denote the number of successes, which is $B(n+m, x)$ because $n+m$ trials are independent given $X=x$. The conditional density of X given $N=n$ is

$$
\begin{aligned}
f_{X \mid N}(x \mid n) & =\frac{P(N=n \mid X=x) f_{X}(x)}{P(N=n)} \\
& =\frac{\binom{n+m}{n} x^{n}(1-x)^{m}}{P(N=n)} \\
& =\frac{\binom{n+m}{n} x^{n}(1-x)^{m}}{\int_{0}^{1}\binom{n+m}{n} x^{n}(1-x)^{m} d x} \\
& =\frac{x^{n}(1-x)^{m}}{\int_{0}^{1} x^{n}(1-x)^{m} d x}
\end{aligned}
$$

Thus $X \mid N=n \sim \operatorname{Beta}(n+1, m+1)$.

2 Chapter 7: Properties of Expectation

The expected value of a discrete random variable X is defined by

$$
E(X)=\sum_{\text {allx }} x p(x)
$$

For continuous random variables:

$$
E(X)=\int x f(x) d x
$$

If $P(a \leq X \leq b)=1$, then $a \leq E[X] \leq b$.

3 Expectation of functions of multiple random variables

If (X, Y) have a joint probability mass function, then

$$
E(g(X, Y))=\sum_{y} \sum_{x} g(x, y) p(x, y)
$$

If X and Y have a joint probability density function, then

$$
E(g(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y
$$

3.1 Problem

An accident occurs at a point X that is uniformly distributed on a road of length L . At the time of the accident an ambulance is at a location Y that is also uniformly distributed on the road. Assuming that X and Y are independent, find the expected distance between the ambulance and the point of the accident. $E(|X-Y|=$?
Clearly, $f(x, y)=1 / L^{2}, 0<x<l, 0<y<L$.

$$
E|X-Y|=\frac{1}{L^{2}} \int_{x=0}^{L} \int_{y=0}^{L}|x-y| d x d y=\frac{L}{3}
$$

3.2 Properties of Expectation

1. $E(X+Y)=E(X)+E(Y)$ for both discrete and continuous random variables.
2. Suppose that for random variables X and $Y, X \geq Y, X-Y \geq 0, E[X-Y] \geq 0 E[X] \geq$ $E[Y]$.
3. If $E\left[X_{i}\right]$ is finite for all $i=1, \ldots, n$, then $E\left[X_{1}+\ldots+X_{n}\right]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]$.
4. The sample mean Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables having distribution function F and expected value μ. Such a sequence of random variables is said to constitute a sample from the distribution F. The quantity \bar{X}, defined by

$$
\bar{X}=\sum_{i=1}^{n} \frac{X_{i}}{n}
$$

is called sample mean. $E(\bar{X})=\sum_{i=1} n \frac{E\left(X_{1}+E\left(X_{2}\right)+\cdots E\left(X_{n}\right)\right.}{n}=\frac{n \mu}{n}=\mu$.
Example: (Saint Petersburg Paradox) A casino offers a game of chance for a single player in whicha fair coin is tossed at each stage. The pot starts at 1 dollar and is doubled every time a head appears. The first time a tail appears, the game ends and the player wins whatever is in the pot. Thus the player wins 1 dollar if a tail appears on the first toss, 2 dollars if a head appears on the first toss and a tail on the second, 4 dollars if a head appears on the first two tosses and a tail on the third, 8 dollars if a head appears on the first three tosses and a tail on the fourth, and so on. In short, the player wins 2^{k-1} dollars if the coin is tossed k times until the first tail appears. What is the expected payout? $\left(\sum_{k=1}^{\infty} 2^{k-1} \frac{1}{2^{k-1}} \frac{1}{2}=\infty\right)$

Boole's Ineq: Let $A_{1}, A_{2}, \ldots, A_{n}$ denote the events and define the indicator variables $X_{i}, i=1, \ldots, n$ by

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if } A_{i} \text { occurs } \\
0, \text { otherwise }
\end{array}\right.
$$

let $X=\sum_{i=1}^{n} X_{i}$. SO X is the number of events A_{i} that occurs. Define

$$
Y=\left\{\begin{array}{l}
1, \text { if } X \geq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

Hence $Y=1$ if at least one of the A_{i} occurs and is 0 otherwise. From the fact $X \geq Y$ and hence $E(X) \geq E(Y)$ we obtain the famous Boole's inequality

$$
P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

5. Expectation of a Binomial random variable X with parameter n and p represents the number of successes in n independent trials when each trial has probability p of being
a success. Let $X \sim \operatorname{Bin}(n, p)$. Since X represents the number of successes in n trials, $X=X_{1}+X_{2}+\ldots+X_{n}$, where

$$
X_{i}=\left\{\begin{array}{l}
1, \text { if the ith trial results in a success } \\
0, \text { if the ith trial results in a failure }
\end{array}\right.
$$

Clearly, $X_{i} \sim \operatorname{Bernoulli}(p)$ so that $E\left(X_{i}\right)=p$ and hence $E(X)=\sum_{i=1}^{n} E\left(X_{i}\right)=n p$.

