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1 Motivation

Denote the observations by x with sampling density (pdf/pmf) f(x | θ) with θ ∈ Θ ⊂ Rd. Let
π(·) be a prior on θ. The posterior

π(θ | x) =
f(x | θ)π(θ)

m(x)
, m(x) =

∫
f(x | θ)π(θ)dθ.

In the i.i.d. case, f(x | θ) =
∏n
i=1 f(xi | θ).

In non-conjugate settings, we need a general set of tools to “compute” the posterior density.
Here, by “computing” the posterior density, we mean that we should be able to calculate any
posterior functional, such as the posterior mean, variance, median, quantiles of θ or of ψ(θ),
where ψ is a known function. Even in conjugate settings, we have seen examples where the
posterior distribution of certain ψ(θ)s may be hard to obtain analytically, and we had to resort
to Monte Carlo techniques. In general, our aim is to be able to (approximately) sample from the
posterior distribution, so that the distribution of any posterior functional can be approximated.
For example, if θ1, . . . , θT are (approximately) independent samples from the posterior, then
ψ(θ1), . . . , ψ(θT ) are samples from the posterior distribution of ψ(θ) | x, and we can use these
samples to approximate the posterior mean/median/quantiles etc of ψ(θ).

The main bottleneck in sampling from the posterior is that the normalizing constant m(x)
is generally “intractable”. This may be due to the fact that the integral is not analytically
available, or the integral is highly expensive to compute, or a combination of both. For example,
if f(x | θ) ∝ [1 + (x− θ)2]−1, a Cauchy distribution with location θ, and θ ∼ N(0, 1), then the
integral is clearly not a standard one. As a second example, consider x | θ ∼ 0.5N(µ1, 1) +
0.5N(µ2, 1), with µ1, µ2 ∼ N(0, 1) independently. Then,

f(x | θ) = 2−n
n∑
j=0

∑
S:|S|=j

[ ∫ ∏
i∈S

φ(xi − µ1)φ(µ1)dµ1

][ ∫ ∏
l∈Sc

φ(xl − µ2)φ(µ2)dµ2

]
,

where φ is the standard normal cdf and S denotes a subset of {1, . . . , n} with |S| its size. Clearly,
each of the inner integrals can be calculated analytically, but we have an outer sum over 2n

terms.

2 Some strategies for sampling from the posterior

Suppose that the observations are discrete, i.e., take values in a countable set with probability
one. Let us also denote the observed data by xons here. Consider the following algorithm:
Algorithm (discrete ABC):

(i) Sample θ ∼ π.

(ii) Sample x ∼ f(· | θ).
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(iii) If x = xobs, retain θ. Otherwise, discard θ.

We claim that if θ is retained at step (iii), then θ is a sample from the posterior! To see this,
let B be any Borel subset of Θ. If θ is retained at step (iii), then

P (θ ∈ B) = P (θ ∈ B | x = xobs) =
P (θ ∈ B,x = xobs)

P (x = xobs)

=

∫
B f(xobs | θ)π(θ)dθ∫
f(xobs | θ)π(θ)dθ

= π(θ ∈ B | xobs).

We used the fact that since x is sampled from f(· | θ), P (x = xobs | θ) = f(xobs | θ).
The above algorithm is the simplest version of a class of algorithms which are known as ABC (ap-
proximate Bayes computation) [When the data are discrete, there is no approximation though].
The basic idea is extremely simple: draw samples from the prior, generate “pseudo-data” con-
ditioned on the parameter value, and check if the “pseudo-data” matches the observed data.
If for example the data are iid samples, then x = xobs means that the same set of values are
obtained, irrespective of the order.

An obvious drawback of the above algorithm is that it may be very inefficient, i.e., one may
need to draw a very large number of prior samples to have a moderate number of posterior
samples. A dramatic improvement can be obtained by modifying step (iii) to the condition
T (x) = T (xobs), where T is a sufficient statistic. [Prove this!]

Another ground for improvement is to replace the “hard” accept-reject step by a “softer”
criterion, where we do not entirely discard θ, rather retain it with some probability. Since the
probability of the random event x = xobs is P (x = xobs | θ) = f(xobs | θ), it makes sense to
retain θ with probability proportional to f(xobs | θ). We shall see momentarily that this works
even when x is not discrete, and the algorithm retains θ with probability proportional to the
likelihood f(xobs | θ). This is also very intuitive, keep θ values which have a higher likelihood
with a higher probability.

Algorithm (Bootstrap filter):

(i) Sample θ1, . . . , θT ∼ π independently.

(ii) Set

wt =
f(xobs | θt)∑T
j=1 f(xobs | θj)

.

(iii) Keep θt with probability wt. In other words, Π̂T :=
∑T

t=1wtδθt is our (random) discrete
approximation to the posterior distribution. Here and elsewhere, δu denotes a point mass at u.

It is straightforward to show that for any Borel set B, Π̂T (B)→ Π(B | xobs) as T →∞. To see
this,

Π̂T (B) =
T−1

∑T
t=1 f(xobs | θt)1(θt ∈ B)

T−1
∑T

t=1 f(xobs | θt)
→
∫
B f(xobs | θ)π(θ)dθ∫
f(xobs | θ)π(θ)dθ

,

almost surely by SLLN. Clearly, the last expression is the posterior probability of the set B.
Along similar lines, (and maybe with a few additional assumptions), we can show that for any
“nice” function g : Θ→ R,

T∑
j=1

wjg(θj)→
∫
g(θ)π(θ | xobs)

almost surely as T → ∞, provided the right hand side exists and is finite. This in particular
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means we can approximate any posterior moments from the discrete approximation. Same is
true of posterior quantiles, which allows us to construct credible intervals for the unknown
parameters.

A very useful modification of the Bootstrap filter can be achieved by sampling from an
importance density q in the first step instead of the prior π. The weights then need to be
appropriately adjusted to keep the target distribution the same. This importance density may
be derived from a gaussian approximation to the posterior or a kernel density estimator fitted
to a previous discrete approximation to the posterior.

Algorithm (Bootstrap filter with IS): Let q be a positive density on Θ.

(i) Sample θ1, . . . , θT ∼ q independently.

(ii) Set

ωt =
f(xobs | θt)π(θt)/q(θt)∑T
j=1 f(xobs | θj)π(θj)/q(θj)

.

(iii) Keep θt with probability ωt, i.e., Π̂IS
T :=

∑T
t=1 ωtδθt is the discrete approximation to the

posterior distribution.

Verify that all the properties of Π̂T remain intact for Π̂IS
T . Indeed, with a “good” importance

density q, Π̂IS
T may be efficient by orders of magnitude. For choosing q, one thing to be careful

about is that q is not too light tailed. If q has lighter tails than the posterior, then one may
potentially underestimate uncertainty. A default choice is to use heavy tailed distributions like
the t. The mean and covariance may be set to be the mle and a constant (> 1) multiple of the
inverse Fisher information respectively in regular models.

3 Gibbs sampling

Gibbs sampling refers to a class of Markov chain Monte Carlo algorithms where one samples
iteratively from the full conditional distributions to create a Markov chain whose stationary
distribution is the posterior distribution.

3.1 Why does the Gibbs sampler work?

Suppose (u, v) have a bivariate normal distribution with u ∼ N(0, 1), v ∼ N(0, 1) and
corr(u, v) = ρ. Let r = 1−ρ2. From standard bivariate normal theory, we know u | v ∼ N(ρv, r)
and v | u ∼ N(ρu, r).

A Gibbs sampler proceeds as:

• Initialize u = u(0).

• For t = 1, . . . , T , repeat:

– Sample v(t) ∼ N(ρu(t−1), r) by letting v(t) = ρu(t−1) + ε(t), where ε(t) ∼ N(0, r) is
independent of everything else.

– Sample u(t) ∼ N(ρv(t), r) by letting u(t) = ρv(t) + η(t), where η(t) ∼ N(0, r) is
independent of everything else.

If u(0) ∼ N(0, 1), then it follows from a simple calculation that v(1) ∼ N(0, 1), u(1) ∼ N(0, 1)
and in fact u(1) and v(1) have a bivariate normal distribution with correlation ρ. In fact, this is
true for every u(t) and v(t). This has to be the case since N(0, 1) is the stationary distribution
of the chain u(t).
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We argued in class that for arbitrary starting value u(0), the Markov chain u(t) “converges”
to the stationary distribution. The main observation requires here is that u(t) is a first-order
autoregressive process which is gaussian conditional on the initial value, and the impact of the
initial value geometrically decreases for large t.

3.2 Some useful sampling algorithms

Sampling from a class of multivariate Gaussians: Suppose β ∼ N(Q−1b,Q−1), where
Q is a d × d positive definite matrix and b is a d × 1 vector. We have seen that these type
of conditional posteriors routinely arise when there is a conjugate normal prior. The following
sampling algorithm (Rue, 2001) avoids calculating the inverse of Q and only requires a Cholesky
factorization and a series of linear system solutions, both of which are more efficient and stable
compared to computing inverse.

• Perform a Cholesky decomposition Q = LLT, where L is lower triangular.

• Draw z ∼ N(0, Id), solve LTy = z.

• Solve LTθ = v, where Lv = b.

• Set β = y + θ.

It is straightforward to show that β produced as above has the desired distribution.

Sampling from Dirichlet distribution: Suppose π = (π1, . . . , πk−1) ∼ Dirichlet(α1, . . . , αk−1, αk).

To sample π, draw Γi independently from Gamma(αi, 1) for i = 1, . . . , k and set πl = Γl/(
∑k

i=1 Γi).

3.3 Some basic Gibbs samplers

Binomial with unknown sample size: Suppose y | N, p ∼ Binomial(N, p), where N and
p are both unknown. Consider independent priors on N and p, with N ∼ Poisson(λ), and
p ∼ U(0, 1). The full conditionals are:

• p | N, y ∼ Beta(y + 1, N − y + 1).

• To sample N | p, y, set N = y + t, with t ∼ Poisson(λ(1− p)). [Verify.]

Linear regression with ridge prior: Suppose y | β, σ2 ∼ N(Xβ, σ2In), where X is a n× d
matrix of covariates and β ∈ Rd is a vector of covariates. Consider the following prior specifica-
tion on β, σ2, with β | σ2 ∼ N(0, λ−1σ2Id) and σ2 ∼ IG(α/2, γ/2). λ, α, β are hyperparameters
which we fix. The full conditionals are:

• β | σ2, y ∼ Nd((X
TX+λId)

−1XTy, σ2(XTX+λId)
−1). [Note: this is of the N(Q−1b,Q−1)

form.]

• σ2 | β, y ∼ IG((n+ d+ α)/2, {(y −Xβ)T(y −Xβ) + λβTβ + γ}/2).

3.4 Data augmentation Gibbs samplers

Consider the following two examples. The first one is that of linear regression with with
t-distributed error, i.e., yi = xβi + εi with εi ∼ tν(0, σ2) independently for i = 1, . . . , n. Suppose
ν is given for now. Consider the same prior on β, σ2 as before. The joint posterior of β, σ2 is
now proportional to

π(β, σ2 | y) ∝
{

(σ2)−n/2
n∏
i=1

[
1 +

(yi − xT
i β)2

νσ2

]−(ν+1)/2}
π(β, σ2).
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This clearly does not admit conjugate full conditionals.
Next, consider probit regression where the response yi is binary and Pr(yi = 1 | β) =

Φ(xT
i β), with Φ the normal cdf. With a Gaussian prior β ∼ N(0, λ−1Id), the posterior of β is

π(β | y) ∝ π(β)

n∏
i=1

[Φ(xT
i β)]yi [1− Φ(xT

i β)](1−yi)

which again does not admit conjugate full conditionals.
The idea of data augmentation is to introduce latent variables so that when integrated over

the distribution of the latent variables, one recovers the original likelihood. This is often an
extremely useful trick to enable Gibbs sampling.

Fitting an iid t model: Suppose y1, . . . , yn | µ, σ2, ν ∼ tν(µ, σ2). Consider priors µ | σ2 ∼
N(0, λ−1σ2), σ2 ∼ IG(α1/2, α2/2). Also, consider a discrete uniform prior for ν on a set of
pre-specified grid points {ν∗1 , . . . , ν∗G}. Consider the following hierarchical specification of the
likelihood with data augmentation:

yi | τi, µ, σ2, ν ∼ N(µ, τ−1i σ2), i = 1, . . . , n

τi ∼ Gamma(ν/2, ν/2), i = 1, . . . , n.

Exploiting the fact that a t density can be expressed as a scale-mixture of normals, it is clear
that one obtains the iid t likelihood by integrating over the τis. However, we retain the τis to
facilitate Gibbs sampling, which cycles through the following steps:

• Sample τi | µ, σ2, ν, y independently for i = 1, . . . , n from Gamma((ν+1)/2, (yi−µ)2/(2σ2)+
ν/2) distributions.

• Sample µ | τ, σ2, ν, y from a N((
∑n

i=1 τiyi)/(
∑n

i=1 τi + λ), σ2/(
∑n

i=1 τi + λ) distribution.

• Sample σ2 | µ, τ, ν, y from an IG((n+ 1 + α1)/2, {
∑n

i=1 τi(yi − µ)2 + λµ2 + α2}/2) distri-
bution.

• To sample ν from its discrete conditional posterior, we have two options:

– Draw ν | τ, µ, σ2, y from the discrete distribution Pr(ν = ν∗g | τ, µ, σ2, y) = wg, where

wg ∝
∏n
i=1 τ

ν/2−1
i {(ν/2)ν/2/Γ(ν/2)}τν/2−1i e−ντi/2.

– Marginalize τ to draw ν | µ, σ2, y from the discrete distribution Pr(ν = ν∗g |
τ, µ, σ2, y) = wg, where wg ∝

∏n
i=1 tν∗g ((yi − µ)/σ), with tν(x) denoting the stan-

dard t density with ν degrees of freedom evaluated at x.

Linear regression with t error: The above data augmentation scheme can be trivially
extended to linear regression with t error by considering

yi | τi, β, σ2, ν ∼ N(xT
i β, τ

−1
i σ2), i = 1, . . . , n

τi ∼ Gamma(ν/2, ν/2), i = 1, . . . , n.

The full conditionals are straightforward to work out (next exercise!).

Probit regression: The data augmentation scheme here is from a famous paper by Albert &
Chib (1993). Let yi = 1(zi > 0), where zi ∼ N(xT

i β, 1). Clearly, this implies Pr(yi = 1) =
Φ(xT

i β). Letting z = (z1, . . . , zn)T, the joint posterior of β, z is

π(β, z | y) ∝ π(β)
n∏
i=1

[
1(zi > 0)1(yi = 1) + 1(zi ≤ 0)1(yi = 0)

]
φ(zi − xT

i β).
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The Gibbs sampler cycles through:

• Sample β | y, z from N((XTX + λId)
−1XTz, (XTX + λId)

−1).

• For i = 1, . . . , n, independently sample zi | y, β from

– A N(xT
i β, 1) truncated to (0,∞) if yi = 1.

– A N(xT
i β, 1) truncated to (−∞, 0) if yi = 0.

Mixture models: Mixture models are an extremely useful class of models that are used for
semi-parametric density estimation, classification, regression and various other tasks. We shall
focus on density estimation for illustration. Say {fh : h = 1, . . . , k} are a set of density functions
that are specified up to a few parameters. For example, fh can be the density function of
N(µh, τ

−1
h ). A mixture of the fhs take the form f =

∑k
h=1 πhfh, where πh ≥ 0 and

∑k
h=1 πh = 1.

Clearly, f is a density.
Gibbs sampling for location-scale mixtures of normals again uses a data augmentation trick.

Suppose fh ≡ N(µh, τ
−1
h ). The unknown parameters here are {πh, µh, τh}kh=1, which are en-

dowed with the following priors:

π ∼ Dirichlet(α, . . . , α),

µh | τh ∼ N(µ0, τ
−1
0 τ−1h ),

τh ∼ Gamma(aτ , bτ ).

Note: to specify the above prior, we need to specify 5 hyperparameters: α, µ0, τ0, aτ , bτ . A
default choice of α = 1/k. [Has connections with Dirichlet process mixtures, which are a class
of infinite mixture models]

The main difficulty with mixture models is that the likelihood is intractable due to its com-
binatorial nature: the joint likelihood of y1, . . . , yn iid from f =

∑k
h=1 πhfh can be written

as
n∏
i=1

k∑
h=1

πhfh(yi) =

k∑
γ1=1

. . .

k∑
γn=1

πn1
1 . . . πnk

k fγ1(y1) . . . fγn(yn),

where nj = #(γi = j). To see this, start by noting that both sides have kn terms in the
summand.

The above likelihood is clearly intractable to deal with due to the sum over the exponential
number of terms. However, the way the sum is arranged gives us the idea of data augmentation.
For each individual i, introduce a latent index γi ∈ {1, . . . , k} with pr(γi = h) = πh. Then, we
can write the model hierarchically as:

yi | zi = h, µ, τ, π ∼ N(µh, τ
−1
h ), i = 1, . . . , n

π ∼ Dirichlet(α, . . . , α),

µh | τh ∼ N(µ0, τ
−1
0 τ−1h ),

τh ∼ Gamma(aτ , bτ ).

Verify that the Gibbs sampler cycles through the steps:

1. Update γi from its discrete conditional posterior with

Pr(γi = h | −) =
πhφ(yi;µh, τ

−1
h )∑k

l=1 πlφ(yi;µl, τ
−1
l )

.
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2. Update µh, τh from their conditional posterior:

τh | − ∼ Gamma(a, b), a = aτ + nh/2,

b = bτ +
1

2

[ ∑
i:γi=h

(yi − ȳh)2 +
τ0nh
τ0 + nh

(ȳh − µ0)2
]
,

µh | − ∼ N(µ̂h, η
−1
h τ−1h ), ηh = (nh + τ0), µ̂h = (τ0µ0 + nhȳh)/(nh + τ0).

In the above display, nh = #(i : γi = h) and ȳh = (
∑

i:γi=h
yi)/nh.

3. Update π | − ∼ Dirichlet(α+ n1, . . . , α+ nk).

Check the correctness of the above steps. Straightforward to implement the above Gibbs sam-
pler. Discarding a burn-in period, we can plot f t(yg) =

∑k
h=1 π

t
hφ(yg;µ

t
h, (τ

−1
h )t) at MCMC

iteration t on a fine set of grid points yg. Can compute posterior mean and pointwise intervals.
Can also do inference on any functional of the density. For example, suppose we are interested
in obtaining a confidence interval for the hazard function h(t) = 1− F (t), with F the cdf of f ,
at a given point t.
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