1 Sample Space

It is the set of all possible outcomes of an experiment.

1. Coin flipping $S=\{H, T\}$
2. Flipping two coins $S=\{(H, H),(H, T),(T, H),(T, T)\}$
3. Order of finish in a race among the 7 horses having post positions $\{1,2,3,4,5,6,7\}$, then $S=\{$ all 7 ! permutations of $(1,2,3,4,5,6,7)\}$
4. Measuring the lifetime of a light bulb $S=\{x: 0 \leq x<\infty\}$.

2 Events

An event E is any subset of the sample space S. This is a set consisting some possible outcomes of the experiment.

1. For flipping coin, $E=\{H\}$ is the event that a head is seen.
2. Flipping two coins, $\mathrm{E}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})\}$ is the event that a head appears on the first coin.
3. Light bulb, $\mathrm{E}=\{x: 0 \leq x \leq 100\}$ is the event that the light bulb lasts less than 100 hours.

2.1 Form new events from two or more events

1. Unions of event E and event F, denoted by $E \cup F$ stands for the set of outcomes that are either in E or in F or in both. $E=\{H\}, F=\{T\}, E \cup F=\{H, T\}$, $E=(H, T),(H, H)\}, F=\{(H, T),(T, T)\}$, then $E \cup F=\{(H, T),(H, H),(T, T)\}$.
2. Intersections of event E and event F, denoted by $E \cup F$ are the set of outcomes that are in both E and F.
3. If events E and F have no element in common, we say that E and F are mutually exclusive and write $E \cap F=\phi$. Remember the ϕ stands for the null set.
4. Union and intersections of multiple events is denoted by $\cup_{i=1}^{n} E_{i}$ and $\cap_{i=1}^{n} E_{i}$.
5. $E^{c}:$ Outcomes in S that are not in E.
6. E is contained in $F, E \subset F$: All of the outcomes of E that are also in F.

3 Refer to vein diagram in class

1. Commutativity: $A \cup B=B \cup A, A \cap B=B \cap A$
2. Associativity: $A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C$
3. Distributivity: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C), A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Display commutative, associative and distributive laws using the vein diagram.

4 de-Morgan's Laws

$(A \cup B)^{c}=A^{c} \cap B^{c},(A \cap B)^{c}=A^{c} \cup B^{c}$.

5 Axioms of Probability

We introduce probability as a measure of frequency of occurrences.

$$
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}
$$

How do we know that if the experiment is repeatedly performed over a second time, we should get a similar limiting proportion of heads? How about a set of simpler and more self-evident axioms? We assume that for each event E in the sample space S there exist a value $P(E)$, referred to as the probability of E. Recall the P is nothing but a mapping from the set of all events to $[0,1]$.

1. Axiom 1:0 $\leq P(E) \leq 1$
2. Axiom 2: $P(S)=1$.
3. For any sequence of mutually exclusive events $E_{1}, E_{2}, \ldots, E_{k}, \ldots$ if $E_{i} \cap E_{j}=\phi$ whenever $i \neq j$, we have

$$
P\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Examples:

1. Tossing a coin. If we assume that a head is as likely to appear as a tail, then we have $P(H)=P(T)=1 / 2$ On the other hand, if the coin were biased and we felt that a head were twice as likely to appear as a tail, then we have $P(H)=2 / 3$ and $P(T)=1 / 3$
2. Rolling a die. If we suppose that all six sides are equally likely to appear, then we would have $1 / 6$ for each possible number from 1 to 6 . The probability of rolling an even number would be $P(2,4,6)=P(2)+P(4)+P(6)=1 / 2$

5.1 Some simple propositions

1. $P(\phi)=0$
2. For finitely many mutually exclusive events,

$$
P\left(\cup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)
$$

mention that when the sample space is finite Axiom 3 is equivalent to this one.
3. $P\left(E^{c}\right)=1-P(E)$
4. If $E \subset F$, then $P(E) \leq P(F)$. (probability of getting a 1 is less than prob of getting an odd number)
5. $P(E \cup F)=P(E)+P(F)-P(E \cap F)$.

Examples:

1. J is taking two books along on her holiday vacation. With probability .5 she will like the first book; with probability .4 she will like the second book; with probability .3 she will like both book. What is the probability she like neither book?
