
Slice sampler for DPM using constructive definition of Dirichlet process

[1–3]

Let V = V1, V2, . . . , has distribution λ∞ where λ = Beta(1, α). Let θ∗ = (θ∗1, θ
∗
2, . . . , )

be independent of V1, V2, . . . and has distribution G∞0 . Let π1 = V1, π2 = (1 − V1)V2, . . ..

Then (π1, π2, . . .) constitutes a random discrete probability distribution. The Dirichlet process

DP(αG0) can be understood as the distribution of the random probability measure P given by

P =

∞∑
h=1

πhδθ∗h

in view of its constructive definition (also called the stick-breaking construction). The DPM

model stated that, given such a P, (y1, . . . , yn) are i.i.d. with common pdf
∫
N(y; θ)dP (θ) and

this can be expressed as

f(y) =
∞∑
h=1

πhN(y; θ∗h)

The problem is to obtain the posterior distribution of P given y or alternatively, to obtain the

conditional distribution of V and θ∗ given y and then convert it to the posterior distribution

of P . It may seem that we have substituted a problem involving a finite number of variables

with a problem involving an infinite number of random variables and made the problem more

complicated. Some clever argumentation of random variables makes this problem simpler and

amenable to computation.

Given P , the pdf of y1 is f(y) =
∑∞

h=1 πhN(y; θ∗h). Let u1 ∈ [0, 1], S1 ∈ {1, 2, . . .} be

(augmented) random variables such that, given P or equivalently given V,θ∗, the joint pdf-pmf

of (y1, u1, S1) is

I(u1 ≤ πS1)N(y1, θ
∗
S1

).

Then, again conditional on P , the marginal density of y1 is f(y) =
∑∞

h=1 πhN(y; θ∗h) which agrees

with what we started in the beginning. Conditional on P , the marginal distribution of S1 is the

discrete distribution (π1, π2, . . .), and the marginal distribution of u1 has pdf
∑∞

h=1 I(u ≤ πh).

We also introduce (ui, Si), i = 2, . . . , n to go with y2, . . . , yn in a similar way. Thus we have

the data y, the augmented (unobserved) variables u = (u1, . . . , un), S = (S1, . . . , Sn) and the

parameters V,θ∗. Their joint distribution may be written as

n∏
i=1

I(ui ≤ πSi)N(yi, θ
∗
Si

)× λ∞ ×G∞0 . (1)

Let nh =
∑n

i=1 I(Si = h), h = 1, 2, . . . be the multiplicities among S. Note that nh = 0 if

1



h > max{Si}.
From (1), it is easy to see that the conditional distributions of u given y,S,V,θ∗ are

independent and

ui ∼ U[0, πSi ], i = 1, . . . , n.

If we drop the u, the joint distribution of (y,S,V,θ∗) can be written as

n∏
i=1

πSiN(yi, θ
∗
Si

)× λ∞ ×G∞0 . (2)

From the form of the joint distribution in (2), the conditional distribution of V given

(y,S,θ∗) are independent and the marginal conditional distributions are

Vh ∼ Beta(1 + nh, α+
∑
k>h

nk), h = 1, 2, . . . ,max{Si}

Note that the conditional distributions of Vh remain unchanged from Beta(1, α) for h > max{Si}.
Again, using (1), the conditional distributions of θ∗ given (y,S,u,V) (notice that we brought

back u here) are independent and the marginal conditional distributions are

θ∗h ∼ G0(dz)
∏

i:Si=h

N(yi; θ
∗
h)

which is exactly same as that in the finite mixture model case. Again the conditional distri-

butions of θ∗h remain unchanged from G0 when h > max{Si} and when nh = 0, h < maxSi.

However u and S are only augmented variables and not part of the data y and therefore we

have to provide their (full) conditional distributions.

Let Hi(ui) = {h : ui ≤ πh}, i = 1, 2, . . . , n. Again, from (1) it is easy to see that the

conditional distributions of S given y,u,V,θ∗ are independent and

P (Si = h | y,u,V,θ∗) =
I(ui ≤ πh)N(yi; θ

∗
h)∑

h∈Hi(ui)
I(ui ≤ πh)N(yi; θ∗h)

Note that the above is zero if h /∈ Hi(ui) and the denominator is a finite sum. All these make

computations feasible.

To sample the Vhs and θ∗hs, [3] recommends drawing until the minimum h∗ such that∑h∗

h=1 πh > 1 −min(u1, . . . , un) which provides a tight upper bound to the maximum element

in Hi(ui).
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