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1 Probability Model

Model: A family of distributions {Pθ : θ ∈ Θ}.
Pθ(B) is the probability of the event B when the parameter takes the value θ.
Pθ is described by giving a joint pdf or pmf f(x | θ).
Experiment: Observe X(data)∼ Pθ, θ unknown.
Goal: Make inference about θ.
Joint distribution of independent rv’s: If X = (X1, . . . , Xn) and X1, . . . , Xn are inde-
pendent with Xi ∼ gi(xi | θ), then the joint pdf is f(x | θ) =

∏n
i=1 gi(xi | θ) where

x = (x1, . . . , xn). For iid random variables g1 = · · · = gn = g.

1.1 Types of models to be discussed in the course

Let X = (X1, . . . , Xn).

1. Random Sample: X1, . . . , Xn are iid

2. Regression Model: X1, . . . , Xn are independent (but not necessarily identically
distributed; the distribution of Xi may depend on covariates zi)

1.1.1 Random Sample Models

Example: LetX1, X2, . . . , Xn iid Poisson(λ), λ unknown. Here we have: X = (X1, X2, . . . , Xn),
θ = λ, Θ = {λ : λ > 0}, Pθ is described by the joint pmf

f(x | λ) = f(x1, . . . , xn | λ) =

n∏
i=1

g(xi | λ)

where g is the Poisson(λ) pmf g(x | λ) = λxe−λ

x! for x = 0, 1, 2, . . .. Hence

f(x | λ) =
n∏
i=1

λxie−λ

xi!

for x ∈ {0, 1, 2, . . .}n.
Example: Let X1, X2, . . . , Xn iid N(µ, σ2), with µ and σ2 unknown. Here we have: X =
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(X1, X2, . . . , Xn), θ = (µ, σ2), Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0}, Pθ is described by
the joint pmf

f(x | µ, σ2) =
n∏
i=1

g(xi | µ, σ2)

where g is the N(µ, σ2) pdf g(x | µ, σ2) = 1√
2πσ2

e−(x−µ)2/(2σ2). Hence

f(x | µ, σ2) =

n∏
i=1

1√
2πσ2

e−(xi−µ)2/(2σ2)

2 Sufficient Statistic

Let X ∼ Pθ, θ unknown. What part (or function) of the data X is essential for inference
about θ?
Example: Suppose X1, . . . , Xn iid Bernoulli(p) (independent tosses of a coin). Intuitively,

T =
n∑
i=1

Xi = # of heads

contains all the information about p in the data. We need to formalize this.
Let X ∼ Pθ, θ unknown.

Definition 1. The statistic T = T (X) is a sufficient statistic for θ if the conditional
distribution of X given T does not depend on the unknown parameter θ.
Abbreviation: T is SS if L(X | T ) is same for all θ, where L stands for law or distribution.

2.1 Motivation for the definition

Suppose X ∼ Pθ, θ ∈ Θ, θ unknown. Let T = T (X) be any statistic. We can imagine that
the data X is generated hierarchically as follows:

1. First generate T ∼ L(T ).

2. Then generate X ∼ L(X | T ).

If T is a sufficient statistic for θ, then L(X | T ) does not depend on θ and Step 2 can
be carried out without knowing θ. Since, given T , the data X can be generated without
knowing θ, the data X supplies no further information about θ beyond what is already
contained in T .
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Notation: X ∼ Pθ, θ ∈ Θ, θ unknown. If T = T (X) is a sufficient statistic for θ, then T
contains all the information about θ in X in the sense that if X is discarded, but we keep
T = T (X), we can “fake” the data (without knowing θ) by generating X∗ from L(X | T ).
X∗ has the same distribution as X (X∗ ∼ Pθ) and the same value of the sufficient statistic
(T (X∗) = T (X)) and can be used for any purpose we would use the real data for.
Example: If U(X) is an estimator of θ, then U(X∗) is another estimator of θ which performs

just as well since U(X)
d
= U(X∗) for all θ.

Cautionary Note: If the model is correct (X ∼ Pθ) and T (X) is sufficient for θ, then can
ignore data X and just use T (X) for inference about θ. BUT if we are not sure that
the model is correct, X may contain valuable information about model correctness not
contained in T (X).
Example: X1, X2, . . . , Xn iid Bernoulli(p). T =

∑n
i=1Xi is a sufficient statistic for p.

Possible Model violations: The trial might be correlated as not independent. The success
probability p might not be constant from trial to trial. These model violations cannot be
investigated using the sufficient statistic. This can be only done by further investigation
with the data.

2.2 Examples of Sufficient Statistic

1. X = (X1, X2) ∼ iid Poisson(λ). T = X1 +X2 is a sufficient statistic for λ because

Pλ(X1 = x1, X2 = x2 | T = t) =
Pλ(X1 = x2, X2 = x2,

redundant if t=x1+x2︷ ︸︸ ︷
T = t )

Pλ(T = t)

=

{
Pλ(X1=x2,X2=x2)

Pλ(T=t) , if t = x1 + x2

0 if t 6= x1 + x2

This follows from the fact that for discrete distributions Pθ,

Pθ(X = x | T (X) = t) =

{
Pθ(X=x)
Pθ(T (X)=t) ifT (x) = t

0 otherwise

Assuming t = x1 + x2,

Pλ(X1 = x1, X2 = x2 | T = t) =
λx1e−λ

x1! · λx2e−λx2!

(2λ)te−2λ

t! (SinceT ∼ Poisson(2λ))

=

(
t
x1

)
2t

which does not involve λ. Thus, T is a sufficient statistic for λ. Note that
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P (X1 = x1 | T = t) =

(
t

x1

)(
1

2

)x1(1

2

)t−x1
, x1 = 0, 1, . . . , t.

Thus L(X1 | T = t) is Binomial(t, 1/2). Given T = t, we may generate fake data
X∗1 , X

∗
2 without knowing λ which has the same distribution as the real data:

(a) Generate X∗1 ∼ Binomial(t, 1/2). (Toss a fair coin t times and count the number
of heads).

(b) Set X∗2 = t−X∗1 .

The real and fake data have the same value of the sufficient statistic: X1 +X2 = t =
X∗1 +X∗2 .

2. Extension to previous Example: If X = (X1, X2, . . . , Xn) are iid Poisson(λ), then
T = X1 +X2 + · · ·+Xn is a sufficient statistic for λ. Moreover

P (X1 = x1, . . . , Xn = xn | T = t) =
t!

x1!x2! · · ·xn!

(
1

n

)t
=

(
t

x1, . . . , xn

)(
1

n

)x1
· · ·
(

1

n

)xn
so that L(X | T = t) is Multinomial with t trials and n categories with equal
probability 1/n (see Section 4.6).

3. X = (X1, X2) iid Expo(β). Then T = X1 +X2 is a sufficient statistic for β.
To derive this, we need to calculate L(X1, X2 | T = t). It suffices to get L(X1 | T = t)
since X2 = t−X1. How to do this?

(a) Find joint density fX1,T (x1, t).

(b) Then get conditional density

fX1|T (x1 | t) =
fX1,T (x1, t)

fT (t)
.

Continuing with the steps,

(a) Use the transformation

U = X1, T = X1 +X2 ⇒ X1 = U,X2 = T − U
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with Jacobian J = 1. Then

fU,T (u, t) = fX1,X2(u, t− u)|J |

=
1

β
e−u/β · 1

β
e−(t−u)/β · 1

=
1

β2
e−t/β, for 0 ≤ u ≤ t <∞.

(b) T = X1 +X2 ∼ Gamma(α = 2, β) so that

fT (t) =
te−t/β

β2
, t ≥ 0.

Aternatively, integrate over x1 in the joint density fX1,T (x1, t) to get fT (t). Now

fX1|T (x1 | t) =

1
β2 e
−t/βI(0 ≤ x1 ≤ t)

te−t/β

β2

=
1

t
I(0 ≤ x1 ≤ t)

which does not involve β.

Thus T = X1 +X2 is a sufficient statistic for β.
Moreover, L(X1 | T = t) is Unif(0, t). This can also be seen intuitively by noting
that

fX1,X2(x1, x2) =
1

β2
e−(x1+x2)/β

is constant on the line segment

{(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 = t}

Thus given T = t, we may generate fake data X∗1 , X
∗
2 without knowing β which has

the same distribution as the real data:

(a) Generate X∗1 ∼ Unif(0, t).

(b) Set X∗2 = t−X∗1 .

The real and fake data have the same value of the sufficient statistic: X1 +X2 = t =
X∗1 +X∗2 .

4. Extension to previous Example: If X = (X1, X2, . . . , Xn) are iid Expo(β), then T =
X1 + X2 + · · · + Xn is a sufficient statistic for β and L(X | T = t) is a uniform
distribution on the simplex

{(x1, . . . , xn) : x1 + · · ·+ xn = t, xi ≥ 0 ∀ i}.
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5. X = (X1, X2) iid Unif(0, θ). Then T = X1 +X2 is not sufficient statistic for θ.

Proof. We must show that L(X1, X2 | T ) depends on θ. The support of (X1, X2) is
[0, θ]2. Given T = t, we know (X1, X2) lies on the line L = {(x1, x2) : x1 + x2 = t}.
Thus, the support of L(X1, X2 | T ) is L ∩ [0, θ]2 which is drawn below for two
different values of θ. The support of L(X1, X2 | T = t) varies with θ. This shows

that L(X1, X2 | T ) depends on θ.

6. If X1, . . . , Xn iid Bernoulli(p), then T =
∑n

i=1Xi is a sufficient statistic for p.
First: What is the joint pmf of X1, . . . , Xn? Note that

P (X1 = 1, X2 = 0, X3 = 1, X4 = 1, X5 = 0) = p · q · p · p · q = p3q2

where q = 1− p. In general,

P (X = x) = P (X1 = x1, . . . , Xn = xn) =
n∏
i=1

pxiq1−xi = p
∑n
i=1 xiq

∑n
i=1(1−xi)

= ptqn−t = pT (x)qn−T (x),

where T (x) = t =
∑n

i=1 xi. Next, we derive L(X | T ). We will use the notation
T (X) =

∑n
i=1Xi = T and T (x) =

∑n
i=1 xi. Recall that for discrete distributions Pθ,

Pθ(X = x | T (X) = t) =

{
Pθ(X=x)
Pθ(T (X)=t) ifT (x) = t

0 otherwise

Assume T (x) =
∑n

i=1 xi = t, θ = p. Then

Pθ(X = x | T (X) = t) =
Pθ(X = x)

Pθ(T (X) = t)

=
ptqn−t(
n
t

)
ptqn−t

=
1(
n
t

)
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since T ∼ Binomial(n, p).

This does not involve p which proves that T is a sufficient statistic for p.
Note: The conditional probability is the same for any sequence x = (x1, . . . , xn) with
t 1s and n− t 0s. There are

(
n
t

)
such sequences.

Summary: Given T = X1 + · · · + Xn = t, all possible sequences of t 1s and n − t 0s
are equally likely.
Algorithm for generating from L(X1, . . . , Xn | T = t):

(a) Put t 1s and n− t 0s in an urn.

(b) Draw them out one by one (without replacement) until the urn is empty.

This makes all possible sequences equally likely. (Think about it!) The resulting
sequence (X∗1 , . . . , X

∗
n) (the fake data) has the same value of the sufficient statistic

as (X1, . . . , Xn):

n∑
i=1

X∗i = t =
n∑
i=1

Xi

2.3 Sufficient conditions for sufficiency

Sometimes finding sufficient statistic might be time-consuming and cumbersome if one
proceeds directly from the definition. We need an easy to verifiable sufficient condition to
find a sufficient statistic. Suppose X ∼ Pθ, θ ∈ Θ.
Theorem 6.2.2
T(X) is a sufficient statistic for θ iff for all x

fX(x | θ)
fT (T (x) | θ)

is constant as a function of θ.
Notation: fX(x | θ) is pdf (or pmf) of X. fT (t | θ) is pdf (or pmf) of T = T (X).
Factorization Criterion (FC): There exist functions h(x) and g(t | θ) such that

f(x | θ) = g(T (x) | θ)h(x)

for all x and θ.

Theorem 1. T (X) is a sufficient statistic for θ iff the factorization criterion is satisfied.

Proof. (When X is discrete)
Notation: T = T (X), t = T (x).
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First, Assume T is a sufficient statistic for θ. Then the pmf f(x | θ) can be written as

f(x | θ) = Pθ(T = t)︸ ︷︷ ︸
This is a function of t and θ. Call it g(t | θ)

· Pθ(X = x | T = t)︸ ︷︷ ︸
This depends on x, but not θ (by defn. of suff. stat. Call it h(x)

= g(t | θ)h(x).

Hence FC is true.
Next Assume FC is true.
Then

Pθ(X = x | T = t) =
Pθ(X = x)

Pθ(T = t)
(since {X = x} ⊂ {T = t})

=
f(x | θ)∑

z:T (z)=t f(z | θ)
=

g(t | θ)h(x)∑
z:T (z)=t g(t | θ)h(z)

=
h(x)∑

z:T (z)=t h(z)

which does not involve θ.

2.4 Applications of FC

1. Let X = (X1, . . . , Xn) iid Poisson(λ). The joint pmf is

f(x | λ) = f(x1, . . . , xn | λ)

=
n∏
i=1

λxie−λ

xi!
=
λ
∑
i xie−nλ∏
i xi!

=

(
λ
∑
i xie−nλ

)(
1∏
i xi!

)
= g(t(x) | λ)h(x)

where T (x) =
∑

i xi, g(t | λ) = λte−nλ, h(x) = 1∏
i xi!

Thus, by FC, T (X) =
∑

iXi is

a sufficient statistic for λ.

2. Simple Linear Regression: Let

Xi = β0 + β1zi + εi, εi
i.i.d∼ N(0, σ2

0) i = 1, . . . , n

where zi, i = 1, . . . , n are known constants.
Alternative statement of the model:

X1, X2, . . . , Xn independent

Xi ∼ N(β0 + β1zi, σ
2
0).
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Data is X = (X1, X2, . . . , Xn). (z1, z2, . . . , zn) are known constants. Unknown pa-
rameter is θ = (β0, β1) ∈ R2. What are the sufficient statistics for this model? Use
FC.

f(x | θ) =
n∏
i=1

1√
2πσ2

0

e−(xi−β0−β1zi)2/2σ2
0︸ ︷︷ ︸

N(β0+β1zi,σ2
0) density

.

=

(
1√

2πσ2
0

)n
exp

{
− 1

2σ2
0

n∑
i=1

(xi − β0 − β1zi)
2︸ ︷︷ ︸

S

}
.

Here

S =

n∑
i=1

x2
i − 2

n∑
i=1

xi(β0 + β1zi) +

n∑
i=1

(β0 + β1zi)
2

=

n∑
i=1

x2
i − 2β0

n∑
i=1

xi − 2β1

n∑
i=1

xizi +

n∑
i=1

(β0 + β1zi)
2.

Plus this back into the exponential and rearrange to get

f(x | θ) =

(
1√

2πσ2
0

)n
exp

{
− 1

2σ2
0

(
− 2β0

n∑
i=1

xi − 2β1

n∑
i=1

xizi +
n∑
i=1

(β0 + β1zi)
2

)}

× exp

{
− 1

2σ2
0

n∑
i=1

x2
i

}

= g

( n∑
i=1

xi,
n∑
i=1

xizi, β0, β1

)
h(x)

= g(T (x), θ)h(x)

where T (x) = (
∑n

i=1 xi,
∑n

i=1 xizi) and

g(t, θ) =

(
1√

2πσ2
0

)n
exp

{
− 1

2σ2

(
− 2β0t1 − 2β1t2 +

n∑
i=1

(β0 + β1zi)
2

)}

with t = (t1, t2) and h(x) = exp
{
− 1

2σ2
0

∑n
i=1 x

2
i

}
.

3. Continuation of Simple Linear Regression Example: What if the variance σ2 is un-
known? Now θ = (β0, β1, σ

2) and Θ = R2 × (0,∞). (Change σ2
0 to σ2 in the earlier
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formulas to indicate this). Now exp
{
− 1

2σ2

∑n
i=1 x

2
i

}
is not a function of x, but

depends also on θ. So we now factor the joint density as

f(x | θ) =

(
1√

2πσ2

)n
exp

{
− 1

2σ2

( n∑
i=1

x2
i − 2β0

n∑
i=1

xi − 2β1

n∑
i=1

xizi +
n∑
i=1

(β0 + β1zi)
2

)}
· 1.

= g(
n∑
i=1

x2
i ,

n∑
i=1

xi,
n∑
i=1

xizi, β0, β1, σ
2)h(x)

= g(T (x), θ)h(x)

where

T (x) =

( n∑
i=1

x2
i ,

n∑
i=1

xi,
n∑
i=1

xizi

)
= (t1, t2, t3)

g(t, θ) = (2πσ2)−n/2 exp

{
− 1

2σ2

(
t1 − 2β0t2 − 2β1t3 +

n∑
i=1

(β0 + β1zi)
2

)}
and h(x) = 1. According to FC, T (X) = (

∑
iX

2
i ,
∑

iXi,
∑

i ziXi) is a sufficient
statistic for θ = (β0, β1, σ

2).

4. Discussion on the preceding examples: We have described two models. The model
with σ2 known (i.e., σ2 = σ2

0) can be regarded as a subset of the model where σ2 is
unknown.

Θ1 = {(β0, β1, σ
2) : σ2 = σ2

0} = R2 × {σ2
0}.

Θ2 = {(β0, β1, σ
2) : σ2 > 0} = R2 × (0,∞).

Θ1 ⊂ Θ2. The sufficient statistics we found for these two models were different:

T1 ≡ (
∑
i

Xi,
∑
i

ziXi) is SS for Θ1.

T2 ≡ (
∑
i

X2
i ,
∑
i

Xi,
∑
i

ziXi) is SS for Θ2.

Note: T2 is also a SS for Θ1, but it is not “minimal”.

5. Sufficient statistic for random samples from various families of normal distributions:
Let X = (X1, . . . , Xn) where X1, . . . , Xn are iid N(µ, σ2). Consider different families
of normal distributions.

Θ1 = {(µ, σ2) : σ2 > 0} (all normal distributions)

Θ2 = {(µ, σ2) : σ2 = σ2
0} (known variance)

Θ3 = {(µ, σ2) : µ = µ0, σ
2 > 0} (known mean)
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For each space, the “obvious” sufficient statistic is different. In all case, the joint pdf
of X is given by

f(x | µ, σ2) =
n∏
i=1

(2πσ2)−1/2 exp

{
− (xi − µ)2

2σ2

}
= (2πσ2)−n/2 exp

{
− 1

2σ2

∑
i

(xi − µ)2

}
(1)

Θ3 : Here µ = µ0, (a known value), so the “unknown” parameter is θ = σ2. The joint
pdf may be factored as

f(x | σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2

∑
i

(xi − µ0)2

}
= g

(∑
i

(xi − µ0)2, σ2
)
h(x)

= g
(
T3(x), σ2

)
h(x),

where T3(x) ≡
∑n

i=1(xi − µ0)2 so that T3 = T3(X) ≡
∑

i(Xi − µ0)2 is a SS for Θ3.
Note: T3 is not even a statistic if µ is unknown (i.e., not fixed). For the rest (Θ1 and
Θ2), we modify (1) by substituting

n∑
i=1

(xi − µ)2 =
n∑
i=1

(xi − x̄)2 + n(x̄− µ)2,

where x̄ = n−1
∑n

i=1 xi. (This is an identity valid for all x1, x2, . . . , xn and µ).
Substituting in (1) and breaking up the exponential yields

f(x | µ, σ2) = (2πσ2)−n/2 exp

{
−
∑n

i=1(xi − x̄)2

2σ2

}
exp

{
− n(x̄− µ)2

2σ2

}
(2)

Θ2 : Here σ2 = σ2
0, (a known value), so the “unknown” parameter is θ = µ. Factoring

the joint pdf (2) as

f(x | µ) =

[
(2πσ2

0)−n/2 exp

{
− 1

2σ2
0

∑
i

(xi − x̄)2

}][
exp

{
− n(x̄− µ)2

2σ2
0

}]
= h(x)g(x̄, µ) = h(x)g(T2(x), µ)

where T2(x) ≡ x̄. This shows that T2 = T2(X) = X̄ is a SS for θ2.

Θ1 : Here both µ and σ2 are unknown so θ = (µ, σ2). It is clear that (2) may be
written as

f(x | µ, σ2) = g(x̄,
∑
i

(Xi − x̄)2, µ, σ2) · 1

= g(T1(x), θ)h(x)
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where T1(x) = (x̄,
∑

i(xi − x̄)2) so that T1 = T1(X) = (X̄,
∑

i(Xi − X̄)2) is a SS for
Θ1.
Note: T1 is also a SS for Θ2 and Θ3, neither T2 or T3 is a SS for Θ1.

2.5 General Facts about SS

1. If T = T (X) is a SS for θ ∈ ΘA, and ΘB ⊂ ΘA, then T is SS for θ ∈ ΘB.

Proof. If L(X | T ) is constant for θ ∈ ΘA, then it is constant for θ ∈ ΘB.

2. If T is a SS (for θ ∈ Θ) and T = φ(U) where U = U(X), then U is also a SS (for
θ ∈ Θ).

Proof. (Using FC) Since T is SS,

f(x | θ) = g(T (x) | θ)h(x)

= g(φ(U(x)) | θ)h(x)

= g∗(U(x) | θ)h(x)

where g∗(u | θ) = g(φ(u) | θ). Hence U(X) is SS.

3. If T = T (X) is a sufficient statistics (for θ ∈ Θ), then U = (S, T ) is also a sufficient
statistic for any S = S(X).

Proof. Immediate consequence of 2) by taking φ(s, t) = t. With this choice of φ, we
have T = φ(U)⇒ U is SS.

4. If T = T (X) and U = U(X) are related by T = φ(U) where φ is one-one function,
then T is SS iff U is SS.

2.6 Application to random samples from various families of normal dis-
tributions:

Recall:

1. T1 = (X̄,
∑

(Xi − X̄)2) is SS for Θ1 = {(µ, σ2) : σ2 > 0}.

2. T2 = X̄ is SS for Θ2 = {(µ, σ2) : σ2 = σ2
0}.

3. T3 =
∑

(Xi − µ0)2 is SS for Θ3 = {(µ, σ2) : µ = µ0, σ
2 > 0}.
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Some facts:

1. T1 is SS for Θ1 ⇒ T1 is SS for Θ2 and for Θ3 (Follows from Fact 1 since Θ1 ⊃ Θ2

and Θ1 ⊃ Θ3.

2. T2 is SS for Θ2 ⇒ T1 is SS for Θ2 (Follows from Fact 3).

3. T3 is SS for Θ3 and T3 =
∑

(Xi − µ0)2 =
∑

(Xi − X̄)2 + n(X̄ − µ0)2 = φ(T1) ⇒ T1

is SS for Θ3 (Follows from Fact 2).

4. T1 is SS for Θ1 ⇒ (X̄, 1
n−1

∑
(Xi− X̄)2) is SS for Θ1 and (

∑
Xi,
∑
X2
i ) is SS for Θ1

(Since both of these are one-one functions of T1 (Follows from Fact 4).

3 Minimal sufficient statistic

Definition 2. A minimal sufficient statistic is a function of any other sufficient statistic.
T = T (X) is minimal sufficient if for every sufficient statistic S = S(X) there exists a
function ψ such that T = ψ(S), that is, T (X) = ψ(S(X)).

Theorem 2. (Lehmann-Scheffe Theorem) X ∼ Pθ, θ ∈ Θ. T (X) is a minimal sufficient

statistic iff for all x, y, T (x) = T (y) iff f(x|θ)
f(y|θ) is constant as a function of θ.

Remark 1. It is difficult to show a statistic is MSS directly from the definition. For
proving MSS, we usually use the Lehmann-Scheffe Theorem. However, it is often very easy
to prove a statistic is not MSS using the definition. If S and T are two different sufficient
statistics, and T cannot be written as a function of S, then T is not minimal.
Example: Consider the three families of normal distributions used earlier. T1 and T2 are
both SS for Θ2, but T1 clearly cannot be written as a function of T2. Thus T1 is not a MSS
for Θ2.
Similarly, T1 and T3 are both SS for Θ3, but T1 clearly cannot be written as a function of
T3. Thus T1 is not a MSS for Θ3.

Comments on the Lehmann-Scheffe Theorem

1. In situations where the support of f(x | θ) depends on θ, a better statement (which
avoids awkward 0

0 ’s) is: For all x, y, T (x) = T (y) iff f(x | θ) = c(x, y)f(y | θ) for all
θ.

2. The “iff” can be broken down as two results

(a) If T (X) is sufficient, then for all x, y, T (x) = T (y) implies f(x|θ)
f(y|θ) constant in θ.

(b) A sufficient statistic T (X) is minimal if for all x, y, f(x|θ)
f(y|θ) constant in θ implies

T (x) = T (y).
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3.1 Examples for Lehmann-Scheffe Theorem

1. X = (X1, . . . , Xn) iid N(µ, σ2). T (X) = (X̄, S2) where S2 = 1
n−1

∑n
i=1(Xi − X̄)2 is

MSS for (µ, σ2)

2. X = (X1, . . . , Xn) iid Uniform(α, β), Θ = {(α, β) : −∞ < α < β < ∞}. T (X) =
(X(1), X(n)) is MSS for (α, β) (X(1) = minXi, X(n) = maxXi). We must verify: for
all x, y, T (x) = T (y) iff there exists c 6= 0 such that f(x | θ) = cf(y | θ) for all θ. (c
does not involve θ, but can depend on x, y). In this case,

f(x | θ) =

n∏
i=1

1

β − α
I(α ≤ xi ≤ β)

=
1

(β − α)n
I(x(1) ≥ α)I(x(n) ≤ β)

Similarly,

f(y | θ) =
1

(β − α)n
I(y(1) ≥ α)I(y(n) ≤ β).

Clearly,

(x(1), x(n)) = (y(1), y(n))

implies f(x | θ) = f(y | θ) (can take c = 1) for all θ ∈ Θ. This gives one direction.
What about the other? Define

A(x) = {θ : f(x | θ) > 0}.

Here θ = (α, β) with α < β. Assume that there exists c 6= 0 such that f(x | θ) =
cf(y | θ) for all θ. Then we must have A(x) = A(y). But

A(x) = {(α, β) : α ≤ x(1), β ≥ x(n)}.

for any x. Thus A(x) = A(y) implies (x(1), x(n)) = (y(1), y(n)) proving that (x(1), x(n))
is MSS.
Note: This style of argument can only work for examples similar to the uniform
distribution where the support depends upon the parameter value.

3. X = (X1, . . . , Xn) iid Uniform(θ, θ + 1). Then T (X) = (X(1), X(n)) is MSS for θ.
Comments:

(a) The dimension of the MSS does not have to be the same as the dimension of
the parameter.
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(b) “shrinking” the parameter space does not always change the MSS. When X =
(X1, . . . , Xn) iid Uniform(α, β), Θ1 = {(α, β) : α < β} and Θ2 = {(α, β) : β =
α+ 1} have the same MSS.

4. Random Sample Model: Suppose X
˜

= (X1, X2, . . . , Xn) iid ψ(x | θ) (pdf or pmf)

where ψ(x | θ) is an arbitrary family of pdf’s (pmf’s). Then

T (X
˜

) = (X(1), X(2), . . . , X(n)),

the order statistics (data arranged in increasing order) is a sufficient statistic for θ,
but may not be minimal.

Proof. (Use FC)

f(x
˜
| θ) =

n∏
i=1

ψ(xi | θ) =
n∏
i=1

ψ(x(i) | θ) · 1

= g(T (x
˜
) | θ)h(x

˜
).

Note: (assume x(1) < x(2) < · · · < x(n)). Then

P (X
˜

= x
˜
| T (X

˜
) = t) =

1

n!

if x
˜

is any rearrangement of x(1), x(2), . . . , x(n) and 0 otherwise. All possible ordering

are equally likely. To generate from L(X
˜
| T ), place the values x(1), x(2), . . . , x(n) in

a hat and draw them out one by one.
Comment: For random sample models, the order statistics are often the SS.

5. X
˜

= (X1, . . . , Xn) iid ψ(x | θ) with

ψ(x | θ) =
1

π

1

1 + (x− θ)2
,

the Cauchy-location family. Look at

f(x
˜
| θ)

f(y
˜
| θ)

=

∏n
i=1

1
π

1
1+(xi−θ)2∏n

i=1
1
π

1
1+(yi−θ)2
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If x(i) = y(i) for all i, then the ratio is a constant function of θ. Now suppose
f(x

˜
| θ)/f(y

˜
| θ) is a constant function of θ. Then

n∏
i=1

(1 + (xi − θ)2) = c(x, y)
n∏
i=1

(1 + (yi − θ)2)

for some function c(x, y) independent of θ. This is equivalent to

n∏
i=1

(θ2 − 2xiθ + x2
i + 1) = c(x, y)

n∏
i=1

(θ2 − 2yiθ + y2
i + 1).

Clearly, both
∏n
i=1(θ2− 2xiθ+ x2

i + 1) and
∏n
i=1(θ2− 2yiθ+ y2

i + 1) are polynomials
of degree 2n in θ with the same set of zeros OL and OR. We can spell out

OL = {xi ± i, i = 1, . . . , n}, OR = {yi ± i, i = 1, . . . , n},

where i =
√
−1, the imaginary root of −1/ Then OL and OR are permutations of

each other. Hence x(i) = y(i) for all i = 1, . . . , n.

6. Suppose X ∼ Pθ, θ ∈ Θ and Pθ has a joint pdf or pmf f(x | θ).
Fact: X is a SS for θ.

Proof. (Using FC) Define T = T (X) = X. (T is the identity function.) Then

f(x | θ) = f(x | θ) · 1 = g(T (x) | θ) · h(x)

where g = f and h(x) ≡ 1. Thus T is SS.

Proof. (From definition of SS)

L(X | T (X) = t) = L(X | X = t) = δt

where δt is the probability measure which places all its mass at the point (dataset)
t.

7. Further suppose X = (X1, . . . , Xn) where X1, . . . , Xn are iid from the pdf (pmf)
f(x | θ).
Fact: T (X) = X = (X1, . . . , Xn) is not a MSS.

Proof. (from definition of MSS) Let S = S(X) = (X(1), X(2), . . . , X(n)) (the order
statistics). Since we have a random sample model, S is a SS. But clearly T is not a
function of S. (You cannot recover the original ordering of the data given only the
order statistics.) Thus T is not a MSS.
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